
WebSphere MQ Telemetry Transport
C language implementation

Version 1.2

30 November, 2003

SupportPac author
Ian Harwood

ian_harwood@uk.ibm.com

mailto:ian_harwood@uk.ibm.com

IA93

 ii

Property of IBM

IA93

 iii

Take Note!

Before using this report be sure to read the general information under "Notices".

Third Edition, November 2003

IA93

 iv

This edition applies to Version 1.2 of IA93 and to all subsequent releases and modifications unless
otherwise indicated in new editions.

© Copyright International Business Machines Corpora tion 2001 . All rights reserved. Note to US
Government Users -- Documentation related to restricted rights -- Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp.

IA93

 v

Table of Contents
Table of Contents .. v

Notices ...vii

Trademarks and service marks..vii

Summary of Amendments..viii

Preface... ix

Bibliography... x

Chapter 1. C language WMQTT API and the programming model.. 1

Programming model ... 1

Connecting and disconnecting .. 1

Sending data .. 2

Receiving data.. 2

Tracing... 2

Chapter 2. WMQTT ‘C’ language API... 4

Connect ... 4

Disconnect ... 6

Publish... 6

Subscribe... 7

Unsubscribe ... 8

Get Connection Status ... 9

Get Message Status... 10

Message State Diagram.. 11

Receive Publication.. 11

Version and Copyright .. 12

Return Codes... 13

Chapter 3. WMQTT Persistence interface .. 15

The persistence interface function prototypes ... 15

Opening the persistence... 15

Resetting persistence... 15

IA93

 vi

Initialising persistence .. 16

The MQISDP_PMSG structure.. 16

Closing persistence .. 16

Handling sent messages .. 17

Handling received messages.. 17

Sample Persistence Implementation... 18

Diagnosing errors ... 18

Chapter 4. Compiling and linking client applications ... 19

Includes ... 19

Linking on Windows 2000... 19

Linking on Linux ... 19

Chapter 5. Single versus Multi task solution ... 20

Running the protocol in a single task .. 20

Running the protocol in three tasks... 20

Creating the send and receive tasks ... 21

MQIsdp_StartTasks .. 21

In detail... 21

Chapter 6. Sample Applications ... 23

publish ... 23

subscribe ... 23

IA93

 vii

Notices
The following paragraph does not apply in any country where such provisions are inconsistent with
local law.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates.

Any reference to an IBM licensed program or other IBM product in this publication is not intended to
state or imply that only IBM's program or other product may be used. Any functionally equivalent
program that does not infringe any of the intellectual property rights may be used instead of the IBM
product.

Evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue,
Thornwood, New York 10594, USA.

The information contained in this document has not be submitted to any formal IBM test and is
distributed AS-IS. The use of the information or the implementation of any of these techniques is a
customer responsibility and depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item has been reviewed by IBM for accuracy in a
specific situation, there is no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do so at their own risk.

Trademarks and service marks

The following terms, used in this publication, are trademarks of the IBM Corporation in the United
States or other countries or both: � IBM � MQSeries � WebSphere

The following terms are trademarks of other companies:

• Windows, Microsoft

IA93

 viii

Summary of Amendments
Date Changes

21 February 2003 Initial release

6 June 2003 Version 1.1

New features:
• Bug fixes

30 November 2003 Version 1.2

New features:
• Added a persistence interface.
• Added DNS resolution so MQIsdp_connect will accept hostnames or IP

addresses.
• Slight API modifications:

o Removed unnecessary version field from CONN_PARMS,
SUB_PARMS and UNSUB_PARMS structures.

o CONN_PARMS structure now only accepts 1 TCP/IP
destination for a broker. It used to accept an array of
MQISDP_SVR structures.

o MQIsdp_connect has been modified so that Interprocess
Communication parameters are passed in a separate
MQISDPTI structure instead of in the CONN_PARMS structure.

• Tracing has been made visible to the API via a new logLevel parameter
in the MQISDPTI structure.

• Modified shared library names to contain wmqtt instead of MQIsdp –
wmqtt.dll on Windows and libwmqtt.so on UNIX.

IA93

 ix

Preface
This SupportPac provides a C language implementation of the WMQTT protocol. The code is supplied
pre-built for Windows 2000, Linux on i386 and is supplied with a makefile to compile the code on
these platforms plus AIX, HP-UX and SUN Solaris. The source code is also supplied to enable the
implementation to be modified or ported to other platforms.

WMQTT – WebSphere MQ Telemetry Transport

MQIsdp – MQ Integrator SCADA Device Protocol. This is the former name for the protocol.

IA93

 x

Bibliography
• WebSphere MQ Event Broker 2.1 Programming Guide, IBM Corporation, SC34-6095-00

• WebSphere MQ Event Broker 2.1 Introduction and Planning, IBM Corporation , GC34-6088-00

• WebSphere Business Integration Message Broker V5.0

• WebSphere Business Integration Event Broker V5.0

IA93

 1

Chapter 1. C language WMQTT API and the programming model

The WMQTT protocol is built into a shared library on the WIN32 and UNIX platforms (wmqtt.dll and
libwmqtt.so respectively), although the source may be compiled and linked as appropriate for the
development platform.

The API provides functions communicating with WebSphere MQ Integrator, such as connecting,
disconnecting, publishing, subscribing, unsubscribing, receiving publications and some additional
helper functions. The API is designed to be non-blocking, so functions will return before an operation,
such as publish or subscribe has completed. The status of these operations can be queried using the
message identifier returned by the API.

A timeout value can be specified when receiving publications. A zero timeout value will cause the
receive publications to poll to see if any data is available. A greater than zero value will cause the
function to efficiently block until either a publication arrives, or the timeout expires.

Any references to WebSphere MQ Integrator broker include the following products:

WebSphere MQ Event Broker V2.1

WebSphere MQ Integrator Broker V2.1

WebSphere MQ Integrator V2.1

WebSphere Business Integration Message Broker V5.0

WebSphere Business Integration Event Broker V5.0

Programming model

The WMQTT C source code may be compiled in one of two ways – to run in a single thread, or 3
threads of execution. The single threaded implementation allows the code to be quickly compiled for
evaluation on a platform. The multi-threaded version is considered to be the most desirable, as tasks
can be done in the background, such as retrying failed transmissions and keeping the WMQTT
connection alive. Obviously the multi-threaded version requires more effort to port.

If using the multi-threaded version then the first thing that must be done is to start up the various
threads. See the section below on Single versus Multi-task for more information, as well as the
sample applications.

Connecting and disconnecting

When MQIsdp_connect returns MQISDP_OK this indicates that a connect message has been
successfully built ready to send to the WMQTT broker. The protocol is in a state of CONNECTING.

MQIsdp_status returns the status of the connection between the device and the WMQTT broker,
which can be:

• MQISDP_CONNECTING - a connection with the broker is being requested, but no
response has been received yet.

• MQISDP_CONNECTED – a response to a connect request has been received, so the
protocol is now connected and ready to send data to the broker.

• MQISDP_DISCONNECTED – a TCP/IP error has occurred and the protocol is trying to
reconnect to the broker.

IA93

 2

• MQISDP_CONNECTION_BROKEN – the protocol has been unable to connect to the
broker and all retries have been exhausted, as determined by the retryCount and
retryInterval parameters of MQIsdp_connect(). See the documentation for MQIsdp_status
for more information.

MQIsdp_disconnect must be called to disconnect the application, even if the connection between
the device and the broker is in state MQISDP_CONNECTION_BROKEN. MQIsdp_disconnect frees
up resources as well as closing the TCP/IP connection.

Sending data

To send data to the broker the application must use MQIsdp_publish . Every piece of data published
must be associated with a topic.

Data can be published no matter what state the connection to the broker is in, but applications need
to be aware that if the protocol fails to reconnect to the broker after a connection error then the
messages will not get delivered. In the event of an error applications can use MQIsdp_getMsgStatus
to find out what messages have been delivered.

Receiving data

To receive data an application must first tell the broker what data it is interested in receiving. This can
be done using MQIsdp_subscribe to specify all topics that the application is interested in.

MQIsdp_receivePub can be used to receive data. A timeout can be specified, so that the API blocks
until a message arrives, or the timeout expires. MQIsdp_receivePub may return:

• MQISDP_NO_PUBS_AVAILABLE – if there are no publications to receive.
• MQISDP_PUBS_AVAILABLE – if a publication is successfully received and there are more

publications available
• MQISDP_OK – if a publication is successfully received and there are no more publications

available.
• MQISDP_DATA_TRUNCATED – if there is a message to receive, but the buffer supplied by

the application is not large enough.

When an application is no longer interested in receiving data for certain topics it can call
MQIsdp_unsubscribe specifying all topics for which it no longer wishes to receive data.

The MQISDP_CLEAN_START flag has an affect on subscriptions active within the broker.

 If the flag is not specified when connecting then the application must explicitly unsubscribe from all
topics, otherwise subscriptions will remain active within the broker even after the application has
disconnected. Data will be queued up to send to the application next time it connects.

If the flag is specified then the broker will remove any active subscriptions and outstanding messages
when the application disconnects (cleanly or otherwise e.g. a TCP/IP error).

Tracing

Debug output may be produced for all the distinct layers within the protocol implementation. The level
of debugging is determined by the logLevel parameter in the MQISDPTI structure that is used to
initialize each thread. See the chapter below on Single versus Multi-task for more information about
running the protocol in one thread or multiple threads, as well as the sample applications.

Values may be logically OR’ed together to trace more that one aspect of the client at a time. Valid
values are:

• LOGNONE – No logging enabled
• LOGNORMAL – Log significant events

IA93

 3

• LOGERROR – Log error conditions
• LOGTCPIP – Log TCP/IP i/o events – verbose output
• LOGSCADA – Log WMQTT i/o events
• LOGDEBUG – Produce detailed debug output.

IA93

 4

Chapter 2. WMQTT ‘C’ language API
Connect

int MQIsdp_connect(MQISDPCH *pHconn ,
 CONN_PARMS * pCp,
 MQISDPTI * pTaskInfo);

Inputs:

• pHconn - Address of a new connection handle. Its value must be initialised to
MQISDP_INV_CONN_HANDLE, otherwise MQISDP_ALREADY_CONNECTED will be
returned.

• pCp - Pointer to a CONN_PARMS structure
• pTaskInfo – Pointer to thread specific information. If MQIsdp_StartTasks() is used than this is

the structure returned for the API. If MQIsdp_StartTasks() is not used then see Chapter 5.

Returns:

• Return code:
MQISDP_OK
MQISDP_NO_WILL_TOPIC
MQISDP_ALREADY_CONNECTED
MQISDP_HOSTNAME_NOT_FOUND
MQISDP_PERSISTENCE_FAILED
MQISDP_DATA_TOO_BIG

• If return code is MQISDP_OK a valid connection handle is returned
otherwise connection handle is set to MQISDP_INV_CONN_HANDLE

CONN_PARMS:

Field Data Type Usage

strucLength long The length in bytes of the CONN_PARMS structure,
including the fixed and variable length portions.

clientId char[24] A NULL terminated string up to
MQISDP_CLIENT_ID_LENGTH (23) characters in length
uniquely identifying the application to the MQIsdp broker.

retryCount long Numbers of times to retry a failed connect operation.

retryInterval long Interval in seconds at which messages should be retried in
a send fails.

options unsigned short Options can be combined by using the bitwise OR
operation.

MQISDP_CLEAN_START : Remove all previous
connection history from the broker. See note below.

MQISDP_WILL : A Will message is being included, which
will be published in the event of the unexpected termination
of this application.

IA93

 5

MQISDP_QOS_0 : Quality of Service for the

MQISDP_QOS_1 Will message. The highest

MQISDP_QOS_2 quality of service specified will be used.

MQISDP_WILL_RETAIN : The Will message will be
published as a retained publication if this application
terminates unexpectedly.

keepAliveTime unsigned short A length of time in seconds. If the WMQTT server does not
receive any data within this time limit it will assume the
application has terminated.

pPersistFuncs MQISDP_PERSIST* A pointer to a structure that contains the functions to
implement persistence for the protocol.
NULL may be specified if persistence is not required.

brokerHostname char * A pointer to the hostname or dotted decimal IP address of
the broker.

brokerPort long The TCP/IP port number of the broker.

Variable length portion of structure

willTopicLength Long Length of the Will topic

Only required if option MQISDP_WILL is specified

willTopic char[n] The Will topic name

Only required if option MQISDP_WILL is specified

willMsgLength long Length of the Will message

Only required if option MQISDP_WILL is specified

willMsg char[n] The Will message data

Only required if option MQISDP_WILL is specified

MQISDPTI:

All of this structure except logLevel is populated by MQIsdp_StartTasks(). Only logLevel is used if the
code is compiled to run single threaded. For detailed information about the content of this structure
see Chapter 5.

Field Data
type

Usage

apiMailbox MBH IPC handle from which the API thread reads

sendMailbox MBH IPC handle to which the API writes

receiveMailbox MBH Not used

IA93

 6

sendMutex MTH IPC Mutex coordinating access to the send thread

receiveSemaphore MSH IPC semaphore which is signalled when messages arrive to be
received.

logLevel long The level of logging for the API thread (This must also be set for the
MQISDPTI structures for the send and receive threads).

Values may be logically OR’ed together and valid values are:
• LOGNONE – No logging enabled
• LOGNORMAL – Log significant events
• LOGERROR – Log error conditions
• LOGTCPIP – Log TCP/IP i/o events – verbose output
• LOGSCADA – Log WMQTT i/o events
• LOGDEBUG – Produce detailed debug output.

• Note on MQISDP_CLEAN_START:
Specifying MQISDP_CLEAN_START means that when an application disconnects cleanly or
otherwise (e.g. a TCP/IP error or the unexpected termination of the application) the WMQI
broker will clean up on behalf of the application, removing all active subscriptions and any
outstanding data for that connection. The WMQTT protocol library will return
MQISDP_CONNECTION_BROKEN to the application after the first TCP/IP error.
If MQISDP_CLEAN_START is not specified then subscriptions and data will remain in the
broker in the event of any errors. In this case the protocol library will automatically attempt to
reconnect the application in the event of a TCP/IP error. An application will only be returned
MQISDP_CONNECTION_BROKEN if the retryCount (as specified in MQIsdp_connect) is
exceeded.

Disconnect

int MQIsdp_disconnect(MQISDPCH *pHconn);

Inputs:

• pHconn - Address of a valid connection handle

Returns:

• Return code:
MQISDP_OK
MQISDP_PERSISTENCE_FAILED
MQISDP_CONN_HANDLE_ERROR

• pHconn - Connection handle is set to MQISDP_INV_CONN_HANDLE

To shutdown all threads associated with the protocol call use MQIsdp_terminate(). This simply sets a
global variable that causes all threads to exit.
int MQIsdp_terminate(void);

Publish

int MQIsdp_publish(MQISDPCH hConn,
 MQISDPMH *pHmsg,
 PUB_PARMS *pPp);

Inputs:

IA93

 7

• hConn - A valid connection handle
• pHmsg - Address of a new message handle
• pPp - Pointer to a PUB_PARMS structure

Returns:

• Return code:
MQISDP_OK
MQISDP_CONN_HANDLE_ERROR
MQISDP_Q_FULL
MQISDP_PERSISTENCE_FAILED
MQISDP_DATA_TOO_BIG
MQISDP_CONNECTION_BROKEN
MQISDP_INVALID_STRUC_LENGTH

• If return code is MQISDP_OK pHmsg points to a valid message handle
otherwise it is set to MQISDP_INV_HANDLE. For publications sent at Quality of Service 0 the
returned message handle will be zero and cannot be used to query the future state of the
publication.

PUB_PARMS:

Field Data
Type

Usage

strucLength long The length in bytes of the PUB_PARMS structure, including the fixed and
variable length portions.

options long Options can be combined by using the bitwise OR operation.

MQISDP_QOS_0 : Quality of Service for the message. The

MQISDP_QOS_1 highest quality of service specified

MQISDP_QOS_2 will be used.

MQISDP_RETAIN : The message will be retained by the WMQTT broker
until another publication is received for the same topic.

topicLength long The length of the topic

topic char* A pointer to the topic to be associated with the data being published

dataLength long The length of the data to publish

data char* A pointer to the data to be published

Subscribe

int MQIsdp_subscribe(MQISDPCH hConn,
 MQISDPMH *pHmsg,
 SUB_PARMS *pSp);

IA93

 8

Inputs:

• hConn - A valid connection handle
• pHmsg - Address of a new message handle
• pSp - Pointer to a SUB_PARMS structure

Returns:

• Return code:
MQISDP_OK
MQISDP_CONN_HANDLE_ERROR
MQISDP_Q_FULL
MQISDP_PERSISTENCE_FAILED
MQISDP_DATA_TOO_BIG
MQISDP_CONNECTION_BROKEN
MQISDP_INVALID_STRUC_LENGTH

• If return code is MQISDP_OK pHmsg points to a valid message handle
otherwise it is set to MQISDP_INV_HANDLE

SUB_PARMS:

Field Data
Type

Usage

strucLength Long The length in bytes of the SUB_PARMS structure, including the fixed and
variable length portions.

Variable length portion of structure

topicLength Long Length of the topic being subscribed to

topic char[n] The name of the topic being subscribed to.

 The topic name must be 4 byte aligned and padded with space.

options Long Options can be combined by using the bitwise OR operation.

MQISDP_QOS_0:

MQISDP_QOS_1
MQISDP_QOS_2

Quality of Service that data should be published at to
this application by the broker.

NOTE: topicLength, topic and options must be adjacent and may repeat as a triplet. This will allow an
application to subscribe to multiple topics in a single message.

Unsubscribe

int MQIsdp_unsubscribe(MQISDPCH hConn,
 MQISDPMH *pHmsg,
 UNSUB_PARMS *pUp);

Inputs:

• hConn - A valid connection handle
• pHmsg - Address of a new message handle

IA93

 9

• pUp - Pointer to a UNSUB_PARMS structure

Returns:

• Return code:
MQISDP_OK
MQISDP_CONN_HANDLE_ERROR
MQISDP_Q_FULL
MQISDP_PERSISTENCE_FAILED
MQISDP_DATA_TOO_BIG
MQISDP_CONNECTION_BROKEN
MQISDP_INVALID_STRUC_LENGTH

• If return code is MQISDP_OK pHmsg points to a valid message handle
otherwise it is set to MQISDP_INV_HANDLE

UNSUB_PARMS:

Field Data
Type

Usage

strucLength long The length in bytes of the UNSUB_PARMS structure, including the fixed
and variable length portions.

Variable length portion of structure

topicLength long Length of the topic being subscribed to

topic char[n] The name of the topic being subscribed to.

 The topic name must be 4 byte aligned and padded with space.

NOTE: topicLength and topic must be adjacent and may repeat as a pair. This will allow an
application to unsubscribe from multiple topics in a single message.

Get Connection Status

int MQIsdp_status(MQISDPCH hConn,
 long infoStrLength,
 long *pInfoCode,
 char *pInfoString);

This API call returns the status of the connection between the WMQTT client and the WMQTT broker.
This API call does not cause any bytes to be sent across the network.

Inputs:

• hConn - A valid connection handle
• infoStrLength - Length of supplied buffer into which informational data may be copied
• pInfoString - Pointer to a buffer into which an informational string may be placed.

Recommended length is MQISDP_INFO_STRING_LENGTH.

Returns:

• Return status code:
MQISDP_CONN_HANDLE_ERROR

IA93

 10

MQISDP_CONNECTING
MQISDP_CONNECTED
MQISDP_DISCONNECTED
MQISDP_CONNECTION_BROKEN

• If the status is MQISDP_CONNECTED
pInfoString contains the TCP/IP address and port number to which the WMQTT protocol
successfully connected.

• If the status is MQISDP_DISCONNECTED
o If pInfoCode is MQISDP_KEEP_ALIVE_TIMEOUT

then pInfoString contains the time that the WMQTT server last responded.
o If pInfoCode is MQISDP_PROTOCOL_VERSION_ERROR

then the WMQTT broker cannot support the version of the WMQTT protocol
specified.

o If pInfoCode is MQISDP_CLIENT_ID_ERROR
then the WMQTT broker rejected the client ID for some reason.

o If pInfoCode is MQISDP_BROKER_UNAVAILABLE
then the WMQTT broker rejected the connection because the broker is busy.

o If pInfoCode is MQISDP_SOCKET_CLOSED
then the WMQTT broker closed the network connection.

o Otherwise pInfoCode contains the numeric TCP/IP error that occurred and
pInfoString indicates whether a send or receive of data failed.

• If the status is MQISDP_CONECTION_BROKEN then the protocol has exhausted attempts to
establish a connection with the broker. The retryCount and retryInterval parameters of
MQIsdp_connect determine how many attempts are made.
 An application only need worry about reconnecting when a MQIsdp_publish,
MQIsdp_subscribe or MQIsdp_unsubscribe fails with MQISDP_CONNECTION_BROKEN,
otherwise the WMQTT protocol will keep retrying on behalf of the application to establish a
connection.
When a connection is broken an application can use MQIsdp_getMsgStatus to find out if
messages it has sent have been successfully delivered or not.
The application must then call MQIsdp_disconnect so that resources are freed.

Get Message Status

int MQIsdp_getMsgStatus(MQISDPCH hConn,
 MQISDPMH hMsg);

This API call returns the status of the message being delivered to the WMQTT broker. This API call
does not cause any bytes to be sent across the network.

Inputs:

• hConn - A valid connection handle
• hMsg - A valid message handle

Returns:

• Return status code:
MQISDP_CONN_HANDLE_ERROR
MQISDP_MSG_HANDLE_ERROR
MQISDP_DELIVERED
MQISDP_RETRYING
MQISDP_IN_PROGRESS

MQISDP_DELIVERED is the final state than a message can get into. A message is delivered once all
the Quality of Service WMQTT protocol flows are complete. Messages with a QoS of 0 will be

IA93

 11

discarded if the TCP/IP connection is down. The application cannot query the state of a publication
sent at QoS 0 because the protocol does not know if delivery is successful or not.

MQISDP_MSG_HANDLE_ERROR is returned if an invalid message handle is supplied.

Message State Diagram

The following state diagram shows how the combination of Quality of Service (QoS) and WMQTT
message type determine how a message is handled. An understanding of the WMQTT protocol will
help understand the diagram.

The first line in each box (TRUE or FALSE) is the result of the test in the previous box. The last item
in the box is the test for deciding which the next box to move to is. Any text in bold is the message
state that would be returned if MQIsdp_getMsgStatus() were called. This is the state that will be
returned until the next block of bold text is encountered.

Receive Publication

int MQIsdp_receivePub(MQISDPCH hConn,
 long msTimeout,

TCP/IP down

FALSE

DISCARDED

TRUE

QoS > 0 or
PUBREL

FALSE

QoS > 0

FALSE

DELIVERED

TRUE

IN_PROGRESS

ACK NOT
RECEIVED IN
TIME

FALSE

QoS == 1

TRUE

DELIVERED

FALSE

SEND PUBREL

ACK NOT
RECEIVED IN
TIME

FALSE

DELIVERED

TRUE

RETRYING

IA93

 12

 long *pOptions,
 long *pTopicLength,
 long *pDataLength,
 long msgBufferLength,
 char *pMsgBuffer);

This API call returns the next publication that is available to be received, which is in the same order
that the publications are received from the WMQTT broker. This API call does not cause any bytes to
be sent across the network.

Inputs:

• hConn - A valid connection handle
• msTimeout - A time in milliseconds to wait efficiently for a publication to arrive.
• msgBufferLength - Amount of space available in pMsgBuffer for receiving messages.
• pMsgBuffer - Pointer to a buffer of length msgBufferLength.

Returns:
• Return code:

MQISDP_CONN_HANDLE_ERROR
MQISDP_PUBS_AVAILABLE
MQISDP_NO_PUBS_AVAILABLE
MQISDP_DATA_TRUNCATED
MQISDP_OK

• pOptions - contains a bit mask indicating what options were set on the publication message
when it was received. Which options are set can be determined by using the bitwise AND
operation with the following options:

o MQISDP_RETAIN
o MQISDP_QOS_0
o MQISDP_QOS_1
o MQISDP_QOS_2
o MQISDP_DUPLICATE

• pTopicLength – The length in bytes of the topic
• pDataLength - The length in bytes of the data associated with the topic
• pMsgBuffer - The first pTopicLength bytes of this buffer contain the topic, which is followed

by pDataLength bytes of message data.

Successful returns:

• If MQISDP_PUBS_AVAILABLE is returned then the application has successfully received
a publication and there are more available.

• If MQISDP_OK is returned then the application has successfully received a publication
and there are no more available.

• If MQISDP_NO_PUBS_AVAILABLE is returned then there are no publications available
to receive.

Failed returns:

• If MQISDP_DATA_TRUNCATED is returned then the application has supplied a buffer
that is too small to receive the data. pDataLength contains the actual length of the data
allowing the application to reallocate a buffer of this length and reissue the receive
publication. pMsgBuffer is filled up to its length with truncated data.

Version and Copyright

void MQIsdp_version(void);

IA93

 13

This prints out the WMQTT protocol version, SupportPac version and copyright information to stdout.

Return Codes

Return Code Value Explanation

MQISDP_OK 0 Success

MQISDP_PROTOCOL_VERSION_ERROR 1001 The WMQTT broker does not support this
version of the WMQTT protocol

MQISDP_HOSTNAME_NOT_FOUND 1002 If a hostname is used in the connection
parameters then this indicates that DNS
resolution of the hostname failed.

MQISDP_Q_FULL 1003 The limit on the amount of data in the process
of being delivered has been reached. Space
will be freed up as messages are delivered or
discarded.

MQISDP_FAILED 1004 Failure

MQISDP_PUBS_AVAILABLE 1005 Publications are available to be received.

MQISDP_NO_PUBS_AVAILABLE 1006 No publications are available to be received.

MQISDP_PERSISTENCE_FAILED 1007 When connecting or sending data the
persistence implementation reported an error.
Investigate the persistence implementation to
resolve the problem.

MQISDP_CONN_HANDLE_ERROR 1008 An invalid connection handle has been
specified.

MQISDP_NO_WILL_TOPIC 1010 Option MQISDP_WILL has been supplied on
MQIsdp_connect, but there is no Will topic.

MQISDP_INVALID_STRUC_LENGTH 1011 An incorrect length supplied in a structure
causes the send task to attempt to read
beyond the end of the structure.

MQISDP_DATA_LENGTH_ERROR 1012 The data length parameter of MQIsdp_publish
is less than zero.

MQISDP_DATA_TOO_BIG 1013 The data supplied is bigger than the WMQTT
protocol can handle

MQISDP_ALREADY_CONNECTED 1014 MQIsdp_connect has been called when a
connection already exists for the application.

MQISDP_CONNECTION_BROKEN 1017 All attempts by the WMQTT client to establish
a connection with the WMQTT broker have
been exhausted. MQIsdp_getMsgStatus,
MQIsdp_status can be used to find what
messages have been delivered and why the
connection failed. MQIsdp_receivePub can
receive waiting publications.

IA93

 14

The application must disconnect before it is
able to send any more data.

MQISDP_DATA_TRUNCATED 1018 The receive buffer supplied for
MQIsdp_receivePub is not big enough for the
data.

MQISDP_CLIENT_ID_ERROR 1019 The WMQTT broker refused the connection
attempt because of a problem with the client
identifier.

MQISDP_BROKER_UNAVAILABLE 1020 The WMQTT broker has refused the
connection attempt.

MQISDP_SOCKET_CLOSED 1021 The remote socket was closed unexpectedly
terminating communications.

MQISDP_OUT_OF_MEMORY 1022 No more memory can be allocated for handling
the API call.

IA93

 15

Chapter 3. WMQTT Persistence interface
This describes the persistence interface exposed by this implementation of the WMQTT protocol.
Developers may write their own persistence implementations as applicable for their environment. A
sample implementation is included in mspfp.c which does persistence to the file system.

Using persistence is optional. If a NULL interface is used then the protocol will run entirely in memory,
but will not be protected against unexpected application termination.

The persistence is used to store messages being sent from the client to the broker and messages
being received from the broker by the client. The sent and received messages should be handled as
two separate flows of data as the keys used for persisting the messages are unique in the context of
send or receive, but may not be unique across both flows.

The persistence interface function prototypes

At various points in the transmission of a WMQTT message from the client to the broker and vice-
versa exit points will be called to record state information to persistent storage. The function names
used to implement the persistence are not important. What is important are the function signatures –
return codes and parameters. The function signatures must correspond to what is expected in
structure MQISDP_PERSIST in MQIsdp.h.

Structure MQISDP_PERSIST or NULL is passed in to MQIsdp_connect indicating if persistence is
required or not. The structure contains the function entry points that are required for persistence as
well as a void* pointer to pUserData. This pUserData pointer is exclusively for use by the persistence
and is specific to the particular persistence implementation being used. Prior to calling
MQIsdp_connect pUserData should be initialised to point at a block of storage that the persistence
implementation can use for storing state information between calls to the functions. pUserData is
passed in as the first parameter to each persistence function.

In the sample file system implementation provided in mspfp.c the pUserData pointer is initialised by
the getPersistenceInterface() function.

Opening the persistence

int open(void*pUserData, char *pClientId, char*pBroker, int port);

This is the first function that is called during MQIsdp_connect. The client Id, broker and port taken
together uniquely identify the persistence store for this client. The implementation should initialize the
persistence ready for use.

Inputs:
• pUserData – For storing state. A block of storage that is specific to the persistence

implementation being used.
• pClientId – A string containing the client identifier passed into connect.
• pBroker - A string containing the DNS resolved address of the broker.
• Port - The TCP/IP port of the broker.

Returns:

• This must return 0 on success.
• A non-zero return code indicates failure causing MQISDP_PERSISTENCE_FAILED being

retuned to the API. No bytes will be sent over TCP/IP as a result.

Resetting persistence

int reset(void *pUserData);

IA93

 16

This function will be called on both MQIsdp_connect and MQIsdp_disconnect if option
MQISDP_CLEAN_START is specified. Reset means that all persisted messages should be deleted
so that the persistence reverts to its original empty state.

Inputs:
• pUserData – Persistence specific storage.

Returns:

• This must return 0 on success.
• A non-zero return code indicates failure causing MQISDP_PERSISTENCE_FAILED being

retuned to the API. No bytes will be sent over TCP/IP as a result.

Initialising persistence

There are two functions to do this:
int getAllReceivedMessages(void* pUserData, int *numMsgs, MQISDP_PMSG** pMsgs);
int getAllSentMessages(void* pUserData, int *numMsgs, MQISDP_PMSG** pMsgs);

These functions are called during MQIsdp_connect if option MQISDP_CLEAN_START is not
specified. These functions are used to reload any previously persisted messages.

Inputs:

• pUserData – Persistence specific storage.

Returns:

• This must return 0 on success.
• A non-zero return code indicates failure causing MQISDP_PERSISTENCE_FAILED being

retuned to the API. No bytes will be sent over TCP/IP as a result.
• *numMsgs contains the number of messages being reloaded.
• **pMsgs points to an array of MQISDP_PMSG structures and is of dimension *numMsgs. A

MQISDP_PMSG structure must be populated for each message to be reloaded. The array
pointer *pMsgs may be freed on the next persistence API call.

The MQISDP_PMSG structure

This structure contains 3 fields:
• unsigned long key – The identifier used when the message was persisted.
• int length – The message length.
• char * pWmqttMsg – A pointer to the message being reloaded. The pWmqttMsg pointer must

point to malloced storage as it will be automatically freed when the message is successfully
delivered.

Closing persistence

int close(void *pUserData);

Close is the last persistence function to be called in the lifetime of a connection and is called during
MQIsdp_disconnect. Close may close all handles and release all storage being used by the
persistence.

Inputs:
• pUserData – Persistence specific storage.

Returns:

• This must return 0 on success.
• A non-zero return code indicates failure causing MQISDP_PERSISTENCE_FAILED being

retuned to the API.

IA93

 17

Handling sent messages

int addSentMessage(void *pUserData, unsigned long key, int msgLength, char *pWmqttMsg);
int updSentMessage(void *pUserData, unsigned long key, int msgLength, char *pWmqttMsg);
int delSentMessage(void *pUserData, unsigned long key);

These 3 functions are used for persisting data when publications or subscriptions are being sent from
the client to the broker.

addSentMessage indicates that a new message is being sent and should be persisted.

updSentMessage indicates that a previously persisted message for the key should be replaced with
the new byte array. This is used to handle QoS 2 publications where a PUBREL message replaces a
previously persisted publication.

delSentMessage indicates that the message persisted with the specified key should be deleted
because it has been successfully delivered.

Inputs:
• pUserData – Persistence specific storage
• key - A unique identifier for the message in the sending context. The functions should

use key to uniquely identify the message in the persistence.
• msgLength – The length of the byte array being persisted
• pWmqttMsg – The byte array to be persisted. The byte array contains a message in the

WMQTT wire format defined in the protocol specification. It may be a publication, PUBREL or
subscription.

Returns:

• Must return 0 on success.
• A non-zero return code indicates failure causing MQISDP_PERSISTENCE_FAILED being

retuned to the API in the case of a publication or subscription. In the case of a PUBREL
failing then the preceding publish will be retried until the PUBREL is successfully persisted.
No bytes will be sent over TCP/IP as a result.
On failure the persistence is assumed to be in the same state as prior to the function call
being made.

Handling received messages

int addReceivedMessage(void *pUserData, unsigned long key, int msgLength, char *pWmqttMsg);
int updReceivedMessage(void *pUserData, unsigned long key);
int delReceivedMessage(void *pUserData, unsigned long key);

These 3 functions are used for persisting data when publications are being received by the client from
the broker. The last byte of the pWmqttMsg byte array indicates if a message is eligible for release to
the application or not. A QoS 1 message will have bit MQISDP_RELEASED already set. For QoS 2
messages updReceivedMessage should logically OR the last byte of the message with
MQISDP_RELEASED and re-persist it.

addReceivedMessage indicates that a new message has been received and should be persisted.

updReceivedMessage indicates that a previously persisted message for the key should be marked
as being eligible for release to the application. This is used to handle QoS 2 publications where a
PUBREL message indicates that the publication is now eligible for release to the application. See
above for how to mark a message as being released.

delSentMessage indicates that the message persisted with the specified key should be deleted
because it has been successfully received by the application.

IA93

 18

Inputs:
• pUserData – Persistence specific storage
• key - A unique identifier for the message in the receiving context. The functions should

use key to uniquely identify the message in the persistence.
• msgLength – The length of the byte array being persisted
• pWmqttMsg – The byte array to be persisted. The byte array contains a message in the

WMQTT wire format defined in the protocol specification with 1 additional trailing byte
indicating if the publication is eligible for release to the application or not.

Returns:

• Must return 0 on success.
• A non-zero return code indicates failure causing the necessary protocol acknowledgments not

to get sent to the broker. The broker will keep retrying to send the data until the client
acknowledges receipt.
On failure the persistence is assumed to be in the same state as prior to the function call
being made.

Sample Persistence Implementation

File mspfp.c contains a sample implementation of the persistence interface that uses the file system.

Function getPersistenceInterface(<RootDirectory>) will return a MQISDP_PERSIST structure that
can be passed into MQIsdp_connect. The <RootDirectory> may contain ‘/’ or ‘\’ file separators as well
as WIN32 drive letters (e.g. C:\) if appropriate. Beneath the specified <RootDirectory> a directory
structure is created as follows:

<RootDirectory>/<WMQTT Client Id>/<Broker IP address>_<port>/sent
<RootDirectory>/<WMQTT Client Id>/<Broker IP address>_<port>/rcvd

Sent and received messages are persisted into the sent and rcvd directories respectively. One file per
message is created with a name equivalent to the message key.
When sending Quality of Service 2 publications the PUBLISH message is placed in a file with the
name of the key. The PUBREL message is placed in a file with the name of the key concatenated
with the character ‘u’. This is to ensure that the PUBREL is written to disk before the PUBLISH is
deleted.

This sample implementation has been ported to the Windows and Linux platforms.

Diagnosing errors

If MQIsdp_connect fails with MQISDP_PERSISTENCE_FAILED then the most likely reason is that
the file persistence implementation does not have permission to create files or directories beneath the
<RootDirectory>. On UNIX the userid under which the persistence is running must have read, write
and execute permission on <RootDirectory>.

IA93

 19

Chapter 4. Compiling and linking client applications
To compile and link the WMQTT protocol library see MQIsdp_porting.doc

Includes

Applications must include C header file MQIsdp.h which contains the function prototypes, structures
and defines all values used by the API.

Linking on Windows 2000

The client API is contained in wmqtt.dll. To use this DLL an application needs to link with wmqtt.lib.

Linking on Linux

An application needs to link with libwmqtt.so which contains the WMQTT protocol.

IA93

 20

Chapter 5. Single versus Multi task solution
The protocol library can be compiled in two ways:

1. To run in one thread of execution.
This requires a C library and a TCP/IP socket interface in order to compile and run. The API
also has to be called sufficiently frequently (at least once per keep alive interval) to stop the
protocol timing out.

2. To run in three threads of execution.
This is higher performing, but requires more advanced OS facilities to coordinate the tasks.
These facilities are:

• An Inter Process Communication (IPC) mechanism e.g. maillots or pipes
• A single Mutex semaphore
• A single Resource semaphore

The WMQTT connection is automatically kept alive and the connection handle can be shared
between tasks to allow concurrent sending and receiving of data.
The application must start up the send and receive threads before using the API.

Define MSP_SINGLE_THREAD when compiling the WMQTT shared library code to produce a
version of the protocol that will run in one thread, otherwise the code will be compiled to run in
multiple threads of execution.

Running the protocol in a single task

When running the protocol in a single task the application simply calls the API and the protocol flows
are executed behind the API.

 The API is identical to that used when running in a multi-task environment. The only difference is that
when connecting the parameters apiMailbox, sendMailbox, sendMutex and receiveSemaphore can be
left undefined in the MQISDPTI structure passed into MQIsdp_connect.

Because there is only one thread of execution the TCP/IP socket is only read when the API is called.
If the API is not called sufficiently frequently (at least once per keepalive interval) then the protocol will
timeout. Also the TCP/IP stream buffer may fill up if the WMQTT broker is sending publications to the
application.

Running the protocol in three tasks

When running in a multi-task environment the send and receive tasks must be started prior to using
the API.

 The send and receive tasks are MQIsdp_SendTask and MQIsdp_ReceiveTask respectively. These
tasks receive data from the network, send protocol flows and manage the TCP/IP connection in the
background without blocking the application. When there is no application connected these tasks
close the TCP/IP socket and wait efficiently for the next MQIsdp_connect().

On some embedded systems, particularly safety critical systems, dynamic creation of threads and
processes is not allowed. Bearing this in mind the supplied code implements a lowest common
denominator solution and does not dynamically create threads or processes. Instead it leaves the
send and receive tasks to be started as appropriate for the platform and assumes they have been
successfully started before the API is called. MQIsdp_StartTasks has been supplied in the shared
library and it starts MQIsdp_SendTask and MQIsdp_ReceiveTask as threads correctly for the Win32
and Linux platforms. The source for this in mspstart.c maybe enhanced to support other platforms, or
a more static method of creating the tasks may be used.

IA93

 21

Creating the send and receive tasks

To successfully start the protocol in multiple threads of execution the necessary Inter Process
Communication (IPC) objects need to be created. These are three data buffers, one for each thread
(MailSlots on Windows and unnamed pipes on UNIX), a mutex to coordinate access to the send
thread and a semaphore to signal when messages are available to receive.

MQIsdp_StartTasks

For Windows and Linux MQIsdp_StartTasks creates all necessary IPC these objects and starts the
MQIsdp_SendTask and MQIsdp_ReceiveTask functions as threads. After calling MQIsdp_StartTasks
the application may then call MQIsdp_Connect(). This function, which is defined in mspstart.c, may be
adapted as appropriate for other platforms.

int MQIsdp_StartTasks(MQISDPTI *pApiTaskInfo,
 MQISDPTI *pSendTaskInfo,
 MQISDPTI *pRcvTaskInfo,
 char *pClientId);

Inputs

• pApiTaskInfo – A pointer to an uninitialised MQISDPTI structure, except for field logLevel.
• pSendTaskInfo - A pointer to an uninitialised MQISDPTI structure, except for field logLevel.
• pRcvTaskInfo - A pointer to an uninitialised MQISDPTI structure, except for field logLevel.
• pClientId – A string containing the client identifier that this application will use.

See the section on tracing for more information about logLevel.

Returns

• 0 on success, 1 on error
• pApiTaskInfo, pSendTaskInfo and pRcvTaskInfo are correctly populated with data. The

contents of pApiTaskInfo should be used to provide the mailbox, mutex and semaphore
parameters to MQIsdp_connect.

In detail

If dynamically creating tasks using MQIsdp_StartTasks is not appropriate for your platform, then
these are the rules for creating the send and receive tasks. See MQIsdp_porting.doc for more
information.

• Send task - MQIsdp_SendTask(MQISDPTI *pTaskInfo);
This takes a MQISDPTI structure (MQISDP Task Info) as a parameter, populated as follows:

o sendMailbox - IPC handle which the send task reads from
o receiveMailbox - IPC handle for the send task to write to the receive task
o apiMailbox - IPC handle for the send task to write to the API
o sendMutex – A mutex to coordinate access to the send task mailbox by the receive

and API tasks.
o receiveSemaphore – A semaphore which is in a state of signaled when publications

are available to receive.

• Receive task - MQIsdp_ReceiveTask(MQISDPTI *pTaskInfo);
This takes a MQISDPTI structure (MQISDP Task Info) as a parameter, populated as follows:

o sendMailbox - IPC handle for the receive task write to the send task.
o receiveMailbox - IPC handle for the receive task to read from.
o apiMailbox - Not required – leave undefined.
o sendMutex – A mutex to coordinate access to the send task mailbox by the receive

and API tasks.

IA93

 22

o receiveSemaphore – Not required – leave undefined.

• API task
The following parameters are passed into MQIsdp_connect:

o sendMailbox - IPC handle for the API task write to the send task.
o apiMailbox - IPC handle for the API task to read from.
o sendMutex – A mutex to coordinate access to the send task mailbox by the receive

and API tasks.
o receiveSemaphore – A semaphore used by MQIsdp_receivePub in order to wait to

receive publications.

IA93

 23

Chapter 6. Sample Applications
Two sample applications called publish.c and subscribe.c are supplied for Windows and UNIX
platforms. They are compiled by the supplied makefile. Both applications start the send and receive
tasks as threads in a process, if the code is compiled to run in multiple threads (as it is by default).
Both programs also use the file system implementation of the persistence interface.

publish

Publish takes a URL like string as a parameter which contains all the information required to publish a
message on a particular topic. ‘publish –h’ will give usage. The command line is as follows:

publish wmqtt://clientId@broker:port/topic?qos=[0|1|2]&retain=[y|n]&debug=[0|1]
<LWT=topic?qos=[0|1|2]&retain=[y|n]&data=lwtdata> <data>

wmqtt:// - The fixed identifier for the protocol. Must be specified as is.
clientId - A unique identifier up to 23 characters in length
broker - The hostname or dotted decimal IP address of the broker.
port - The IP port of the broker
topic - The topic on which to publish the data. This maybe hierarchical with each hierarchy being
delimited by ‘/’.
qos - Optional parameter. The Quality of Service at which to deliver the publication – 0, 1 or 2
retain - Optional parameter. Should the publication be retained by the broker – y(yes) or n(no).
debug - Optional parameter. Should debug messages be displayed?

Last Will and Testament. An LW&T message may be specified so that it the publisher application
terminates unexpectedly then the broker will publish a message on its behalf to indicate that it has
ended unexpectedly.

Parameter fields are as described above, plus:
lwtdata - The data to publish in the LW&T message.

data - The data to publish in the message. If no data is specified then the program enters
interactive mode allowing messages to be typed into the program. Each line of data entered will
cause a message to be published. Pressing return with no data will end interactive mode.

Example usage:
 publish “wmqtt://pubId@localhost:1883/my/topic/space?qos=1&retain=n”
“LWT=dead/topic?qos=1&retain=n&data=Publisher_terminated”

This will enter interactive mode and publish all messages to topic my/topic/space, with a LW&T
messages of “Publisher_terminated” being sent to topic dead/topic if publish terminates unexpectedly.

Double quotes are required around the parameters to stop the shell interpreting the special
characters.

subscribe

Subscribe takes a URL like string as a parameter which contains all the information required to
publish a message on a particular topic. ‘subscribe –h’ will give usage. The command line is as
follows:

subscribe wmqtt://clientId@broker:port/topic?qos=[0|1|2]&timeout=secs&debug=[0|1]
<LWT=topic?qos=[0|1|2]&retain=[y|n]&data=lwtdata> <data>

wmqtt:// - The fixed identifier for the protocol. Must be specified as is.
clientId - A unique identifier up to 23 characters in length
broker - The hostname or dotted decimal IP address of the broker.

IA93

 24

port - The IP port of the broker
topic - The topic to subscribe to for data. This maybe hierarchical with each hierarchy being
delimited by ‘/’.
qos - Optional parameter. The maximum Quality of Service at which this subscriber can receive
data – 0, 1 or 2
timeout - Optional parameter. How long should the program wait for data?. Default is forever.
debug - Optional parameter. Should debug messages be displayed?

Last Will and Testament. An LW&T message may be specified so that it the subscriber application
terminates unexpectedly then the broker will publish a message on its behalf to indicate that it has
ended unexpectedly.

Parameter fields are as described above, plus:
lwtdata - The data to publish in the LW&T message.

data - Data to match in received messages. If a publication is received with data matching that
specified then the application will return, otherwise it will carry on waiting for more publications. The
special value of ‘*’ will match the first message received. If no data is specified then the subscriber will
receive all messages until the timeout expires.

Example usage:
 subscribe “wmqtt://subId@localhost:1883/my/topic/space?qos=1&timeout=60”
“LWT=dead/topic?qos=1&retain=n&data=Subscriber_terminated” “*”

This will subscribe to topic my/topic/space, with a LW&T messages of “Subscriber_terminated” being
sent to topic dead/topic if publish terminates unexpectedly. The subscriber will return upon the first
message being received.

Double quotes are required around the parameters to stop the shell interpreting the special
characters.

	Notices
	Trademarks and service marks
	
	

	Summary of Amendments
	Preface
	Bibliography
	C language WMQTT API and the programming model
	Programming model
	Connecting and disconnecting
	Sending data
	Receiving data

	Tracing

	WMQTT ‚C™ language API
	Connect
	Disconnect
	Publish
	

	Subscribe
	Unsubscribe
	Get Connection Status
	

	Get Message Status
	Message State Diagram

	Receive Publication
	Version and Copyright
	Return Codes

	WMQTT Persistence interface
	The persistence interface function prototypes
	Opening the persistence
	Resetting persistence
	Initialising persistence
	The MQISDP_PMSG structure

	Closing persistence
	Handling sent messages
	Handling received messages
	Sample Persistence Implementation
	Diagnosing errors

	Compiling and linking client applications
	Includes
	Linking on Windows 2000
	Linking on Linux

	Single versus Multi task solution
	Running the protocol in a single task
	Running the protocol in three tasks
	Creating the send and receive tasks
	MQIsdp_StartTasks
	In detail

	Sample Applications
	publish
	subscribe

