next contents properties index

L1

W3C

Scalable Vector Graphics (SVG) 1.0
Specification

W3C Working Draft 03 March 2000

This version:
http://www.w3.org/TR/2000/03/WD-SV G-20000303

(Available as: PDF, zip archive of HTML)
Previous public version:

http://www.w3.0rg/TR/1999/WD-SV G-19991203/
Latest public version:

http://www.w3.org/ TR/SVG/

Editor:

Jon Ferraiolo <jferrailo@adobe.com>
Authors:

See author list

Copyright ©1998, 1999, 2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

Abstract

This specification defines the features and syntax for Scalable Vector Graphics (SVG), alanguage for
describing two-dimensional vector and mixed vector/raster graphicsin XML.

Status of this document

This document is a public review draft version of the SV G specification. This working draft attempts to
address review comments that were received during theinitial Last Call period, which started 12 August
1999, and also incorporates other modifications resulting from continuing collaboration with other
working groups and continuing work within the SV G working group.

http://www.w3.org/
http://www.w3.org/TR/2000/03/WD-SVG-20000303/index.html
http://www.w3.org/TR/2000/03/WD-SVG-20000303/WD-SVG-20000303.pdf
http://www.w3.org/TR/2000/03/WD-SVG-20000303/WD-SVG-20000303.zip
http://www.w3.org/TR/1999/WD-SVG-19991203/
http://www.w3.org/TR/SVG/
mailto:jferraio@adobe.com
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

With the publication of this draft, the SV G specification enters a second "Last Call". The second Last
Call period will end on 31 March, 2000. The SV G specification is going through a second Last Call
review process to provide the public and other working groups an opportunity to review the changes to
the specification since the initial Last Call period. A complete list of al changes sincetheinitial Last
Call version of the specification isavailable in Appendix L: Change History. Last call comments should
be sent to svg-comments@w3.org. Publication asa"Last Call" working draft does not imply
endorsement by the W3C membership.

Thisisadraft document and might be updated, replaced or obsoleted by other documents at any time.
While we do not anticipate substantial changes, we still caution that further changes are possible. It is
inappropriate to use this document as reference material or to cite it as other than "work in progress”.

The SV G working group has been using a staged approach. Initially, the working group developed a
detailed set of SVG Requirements, which are listed in SVG Requirements. These requirements were
posted for public review initially in October 1998. For the most part, the specification has been
developed to provide the feature set listed in the requirements document. At some point, an updated
version of SVG Requirements might be posted which contains detailed editorial comments about which
requirements have been addressed in this draft (along with hyperlinks to the relevant sections of the
specification) and notes about which requirements have not been addressed yet and why.

Public discussion of SV G features takes place on www-svg@wa3.org, which is an automatically archived

email list. Information on how to subscribe to public W3C email lists can be found at
http://www.w3.org/Mail/Request.

The home page for the W3C graphics activity is http://www.w3.org/Graphics/Activity. Further
information about SVG may be found at the W3C SV G Overview page.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.0rg/TR/.

Available languages

The English version of this specification is the only normative version. However, for trandations in
other languages see http://www.w3.org/Graphics/SV G/svg-updates/trand ations.html.

Quick Table of Contents

« 1 Introduction

o 2 3SVG Concepts

« 3 Basic Data Types and Interfaces

« 4 SVG Rendering Model

o 5Styling

» 6 SVG Document Structure

7 Coordinate Systems, Transformations and Units
» 8Paths

http://www.w3.org/TR/1998/WD-SVGReq-19981029
http://www.w3.org/TR/1998/WD-SVGReq-19981029
http://www.w3.org/Mail/Lists.html
http://lists.w3.org/Archives/Public/www-svg/
http://www.w3.org/Mail/Lists
http://www.w3.org/Graphics/Activity
http://www.w3.org/Graphics/SVG/
http://www.w3.org/TR/
http://www.w3.org/Graphics/SVG/svg-updates/translations.html

« 9 Basic Shapes

o 10 Text

o 11 Painting: Filling, Stroking and Marker Symbols
« 12 Color

« 13 Gradients and Patterns

« 14 Clipping, Masking and Compositing

« 15 Filter Effects

« 16 Interactivity

o 17 Linking

» 18 Scripting

o 19 Animation

o 20 Fonts

o 21 Metadata

o 22 Backwards Compatibility

« 23 Extensibility

o 24 Exchange SVG

o Appendix A: DTDs

« Appendix B: SVG's Document Object Model (DOM)
« Appendix C. IDL Definitions

« Appendix D. Java L anguage Binding

« Appendix E. ECMA Script Language Binding
« Appendix F: Implementation Reguirements

o Appendix G: Conformance Criteria

o Appendix H: Accessibility Support

o Appendix |: Internationalization Support

o Appendix J: Minimizing SVG File Sizes

o Appendix K: References

o Appendix L: Change History

The following sections have not been written yet, but are expected to be be present in later versions of
this specification:

« Appendix J. Element, attribute and property index

o Appendix K: Index

Full Table of Contents

e 1 Introduction

O

O

0

O

O

0

1.1 About SVG

1.2 Stylable SVG vs. Exchange SVG

1.3 SVG MIME type, file name extension and Macintosh filetype
1.4 Compatibility with Other Standards Efforts

1.5 Terminology

1.6 Definitions

o 2 SVG Concepts

o 3 Basic Data Types and Interfaces

0

O

3.1 Basic data types
3.2 Basic DOM interfaces

e 4 SVG Rendering Model

0

O

O

O

O

0

4.1 Introduction

4.2 The painters model
4.3 Rendering Order

4.4 Grouping
4.5 Types of graphics elements

= 4.5.1 Painting shapes and text

s 4.5.2 Painting raster images

4.6 Filtering painted regions

4.7 Clipping, masking and object opacity

4.8 Parent Compositing

O

0

O

O

5.1 How styling relates to Stylable SVG and Exchange SVG
5.2 Applying style sheets to Stylable SV G content

5.3 Referencing external style sheets

5.4 Features from CSS used by SVG

5.5 The 'style’ element

5.6 The style attribute

5.7 Specifying the default style sheet language

5.8 Cascading and inheritance of properties

5.9 The scope/range of styles

o 5.10 The 'display' property
o 5.11 Default style sheet for SVG
o 5.12 Aural style sheets
o 5.13 DOM interfaces
» 6 SVG Document Structure
o 6.1 Defining an SV G document fragment: the 'svg' element

= 6.1.1 Overview

s 6.1.2 The'svg' element

o 6.2 Grouping and Naming Collections of Drawing Elements; the 'g' element

s 6.2.1 Overview
s 6.2.2 The'g element
o 6.3 References and the 'defs e ement

= 6.3.1 Overview

» 6.3.2 Specifying if external resources are required
= 6.3.3 URI reference attributes
» 6.3.4 The 'defs element

0 6.4 The'desc' and 'title’ elements

o 6.5 The'symbol' element

0 6.6 The'use' eement

o 6.7 The'image' e ement

o 6.8 Conditional processing

= 6.8.1 Conditional processing overview
= 6.8.2 The 'switch' element

= 6.8.3 The system-required attribute

= 6.8.4 The system-language attribute

o 6.9 Common attributes

= 6.9.1 Attributes common to all elements
= 6.9.2 The class attribute
= 6.9.3 The xml:lang and xml:space attributes
0 6.10 DOM interfaces
o 7 Coordinate Systems, Transformations and Units

o 7.1 Introduction

o 7.2 Theinitia viewport

o 7.3 Theinitial coordinate system

o 7.4 Coordinate system transformations

o 7.5 Nested transformations

o 7.6 Thetransform attribute

o 7.7 The viewBox attribute

o 7.8 The preserveAspectRatio attribute

o 7.9 Establishing a new viewport

o 7.10 Units

o 7.11 Redefining the meaning of CSS unit specifiers

o 7.12 Processing rules for CSS units and percentages
o 7.13 DOM interfaces
» 8Paths
o 8.1 Introduction
o 8.2 The'path’ element
o 8.3 Path Data
= 8.3.1 Genera information about path data
= 8.3.2 The "moveto” commands

s 8.3.3 The"closgpath" command

s 8.3.4 The"lineto" commands

= 8.3.5 The curve commands
= 8.3.6 The grammar for path data
o 8.4 Distance along a path
o 8.5 DOM interfaces
« 9 Basic Shapes

o 9.1 Introduction

o 9.2 The'rect' element

o 9.3 The'circle element
o 9.4 The'dlipse element
o 9.5The'line element

o 9.6 The'polyline' e ement

o 9.7 The'polygon' element

o 9.8 The grammar for points specificationsin 'polyline’ and 'polygon’ elements
o 9.9 DOM interfaces

« 10 Text
o 10.1 Introduction

o 10.2 Characters and their corresponding glyphs
o 10.3 The 'text' element

o 10.4 The 'tspan’ element

o 10.5 The 'tref' element

o 10.6 Text layout

» 10.6.1 Text layout introduction

= 10.6.2 Setting the primary text advance direction

= 10.6.3 Glyph orientation within a text run
» 10.6.4 Relationship with bi-directionality
o 10.7 Alignment properties

s 10.7.1 Text alignment properties

» 10.7.2 Basdline alignment properties

o 10.8 Font selection properties

o 10.9 Spacing properties

0 10.10 Text decoration

o 10.11 Text on apath
= 10.11.1 Introduction to text on a path
= 10.11.2 The 'textPath' element
= 10.11.3 Text on a path layout rules

o 10.12 Alternate glyphs

o 10.13 White space handling

o 10.14 Text selection

o 10.15 DOM interfaces

« 11 Painting: Filling, Stroking and Marker Symbols

o 11.1 Introduction

o 11.2 Specifying paint

o 11.3 Fill Properties

o 11.4 Stroke Properties

o 11.5 Markers
= 11.5.1 Introduction
s 11.5.2 The 'marker' element
= 11.5.3 Marker properties

s 11.5.4 Details on how markers are rendered

o 11.6 Rendering properties

o 11.7 Inheritance of painting properties
o 11.8 DOM interfaces

« 12 Color
o 12.1 Introduction

o 12.2 Color profile descriptions and @color-profile
o 12.3 DOM interfaces
» 13 Gradients and Patterns
o 13.1 Introduction
o 13.2 Gradients
= 13.2.1 Introduction
= 13.2.2 Linear gradients
= 13.2.3 Radial gradients
s 13.2.4 Gradient stops
o 13.3 Patterns
o 13.4 DOM interfaces
14 Clipping, Masking and Compositing

o 14.1 Introduction

o 14.2 Simple alpha blending/compositing
o 14.3 Clipping paths
= 14.3.1 Introduction
= 14.3.2 Theinitia clipping path
» 14.3.3 The'overflow' and 'clip' properties

= 14.3.4 Clip to viewport vs. clip to viewBox
= 14.3.5 Establishing a new clipping path
o 14.4 Masking
o 14.5 Object and group opacity: the 'opacity’ property
0 14.6 DOM interfaces
« 15 Filter Effects
o 15.1 Introduction

o 15.2 An example
o 15.3 The filter' element
o 15.4 The filter' property

o 15.5 Filter effectsregion

o 15.6 Accessing the background image

O

O

15.7 Filter primitives overview

= 15.7.1 Overview

= 15.7.2 Common attributes

= 15.7.3 Filter primitive sub-region
15.8 Filter primitive ‘feBlend'

15.9 Filter primitive ‘feColorMatrix'

15.10 Filter primitive 'feComponentTransfer'

15.11 Filter primitive 'feComposite

15.12 Filter primitive 'feConvolveM atrix'

15.13 Filter primitive 'feDiffuseLighting'

» 15.13.1 Light source ‘feDistantLight'

= 15.13.2 Light source ‘fePointLight'

= 15.13.3 Light source 'feSpotLight'
15.14 Filter primitive 'feDisplacementM ap'

15.15 Filter primitive 'feFlood'

15.16 Filter primitive feGaussianBlur'

15.17 Filter primitive 'felmage

15.18 Filter primitive 'feMerge'

15.19 Filter primitive 'feMorphology'

15.20 Filter primitive 'feOffseat'

15.21 Filter primitive ‘feSpecularLighting'

15.22 Filter primitive 'feTile

15.23 Filter primitive 'feTurbulence

15.24 DOM interfaces

o 16 Interactivity

O

O

O

16.1 Introduction

16.2 User interface events

16.3 Pointer events

16.4 Processing order for user interface events

16.5 The 'pointer-events' property

16.6 Zooming panning and magnification

16.7 Cursors

= 16.7.1 Introduction to cursors

s 16.7.2 The 'cursor' property

16.7.3 The 'cursor' element

o 16.8 DOM interfaces

e 17 Linking

o 17.1 Links out of SVG contents: the 'a’ element

o 17.2 Linking into SV G content: URI fragments and SV G views

17.2.1 Introduction: URI fragments and SV G views

17.2.2 SV G fragment identifiers

17.2.3 Predefined views: the 'view' element

o 17.3 DOM interfaces

« 18 Scripting

o 18.1 Specifying the scripting language

18.1.1 Specifying the default scripting language

18.1.2 Local declaration of a scripting lanquage

o 18.2 The'script' e ement

o 18.3 Event handling

o 18.4 Event attributes

o 18.5 DOM interfaces

e 19 Animation

o 19.1 Introduction

o 19.2 Animation elements

19.2.1 Relationship to SMIL Animation

19.2.2 Animation e ements example

19.2.3 Attributes to identify the target of an animation

19.2.4 Attributes to control the timing of the animation

19.2.5 Attributes that define animation values over time

19.2.6 Combining animations

19.2.7 Attributes that control whether animations are additive

19.2.8 Inheritance

19.2.9 The 'animate’ element

19.2.10 The 'set’ element

19.2.11 The 'animateM otion' € ement

19.2.12 The 'animateColor' el ement

19.2.13 The 'animateTransform' e ement

19.2.14 Elements, attributes and properties that can be animated

o 19.3 Animation using the SVG DOM
o 19.4 DOM interfaces
o 20 Fonts
o 20.1 Introduction
o 20.2 SVG fonts
= 20.2.1 Overview of SVG fonts
» 20.2.2 The'font' element
= 20.2.3 The'glyph' element
= 20.2.4 The'missing-glyph' element
s 20.2.5 The'hkern' and 'vkern' elements
o 20.3DOM interfaces
o 21 Metadata
o 21.1 Introduction

o 21.2 Anexample

o0 21.3DOM interfaces
o 22 Backwards Compatibility
« 23 Extensibility

o 23.1 Foreign namespaces and private data

o 23.2 Embedding foreign object types
o 23.3DOM interfaces

o 24 Exchange SVG
o 24.1 Introduction

0 24.2 Appropriate uses of Exchange SVG
o 24.3 Differences between Stylable SVG and Exchange SVG
0 24.4 Exchange SVG language features
= 24.4.1 Styling attributes in Exchange SVG
s 24.4.2 The'color-profile’ element
» 24.4.3 The 'font-face' element
o 24.5DOM interfaces
« Appendix A: DTDs
o A.1lOQverview

o A.2 Common definitions
o A.3DTD for Stylable SVG
o A.4DTD for Exchange SVG

o Appendix B: SVG's Document Object Model (DOM)

O

O

O

O

B.1 SVG DOM Overview

B.2 Naming Conventions

B.3 Interface SV GException

B.4 Interface SVGDOM I mplementation

B.5 Feature strings for the hasFeatur e method call

B.6 Relationship with DOM?2 CSS object model

= B.6.1 Introduction
= B.6.2 Aura media
= B.6.3 Visua media
B.7 Relationship with DOM2 events

o Appendix C. IDL Definitions

o Appendix D. Java Language Binding

o Appendix E. ECMA Script Language Binding

« Appendix F: Implementation Requirements

O

O

O

O

O

F.1 Introduction

F.2 Error processing

F.3 Version control

F.4 Clamping values which are restricted to a particular range

F.5 'path’ element implementation notes

F.6 Elliptical arc implementation notes

= F.6.1 Elliptical arc syntax

s F.6.2 Out-of-range parameters

» F.6.3 Parameterization aternatives

s F.6.4 Conversion from center to endpoint parameterization

= F.6.5 Conversion from endpoint to center parameterization

s F.6.6 Correction of out-of-range radii

F.7 Text selection implementation notes

F.8 Printing implementation notes

e Appendix G: Conformance Criteria

O

O

O

G.1 Introduction

G.2 Conforming SV G Document Fragments

G.3 Conforming SV G Stand-Alone Files

G.4 Conforming SV G Included Document Fragments

o G.5 Conforming SVG Generators

o G.6 Conforming SVG Interpreters

o G.7 Conforming SVG Viewers

« Appendix H: Accessibility Support

o H.1 WAI Accessibility Guidelines

o H.2 SVG Content Accessibility Guidelines
« Appendix |: Internationalization Support

o 1.1 Introduction
o 1.2 Internationalization and SVG
o 1.3 SVG Internationalization Guidelines

e Appendix J: Minimizing SVG File Sizes

o Appendix K: References

o K.1 Normative references

o K.2Informative references

o Appendix L: Change History

The following sections have not been written yet, but are expected to be be present in later versions of
this specification:

« Appendix J. Element, attribute and property index
o Appendix K: Index

Authors:
John Bowler, Microsoft Corporation <johnbo@microsoft.com>

Milt Capsimalis, Autodesk Inc. <milt@autodesk.com>

Richard Cohn, Adobe Systems Incorporated <cohn@adobe.com>
David Dodds, Open Text <ddodds@opentext.com>

Andrew Donoho, IBM <awd@us.ibm.com>

David Duce, Oxford Brookes University <daduce@brookes.ac.uk>
Jerry Evans, Sun Microsystems <jerry.evans@Eng.sun.com>

Jon Ferraiolo, Adobe Systems Incorporated <jferraio@adobe.com>

Scott Furman, Netscape Communications Corporation <fur@netscape.com>

Peter Graffagnino, Apple <pgraff @apple.com>

Rick Graham, BitFlash Inc. <rick@bitflash.com>

Vincent Hardy, Sun Microsystems, <vincent.hardy@sun.com>
Lofton Henderson, OASIS, <lofton@gwestinternet.net>

Alan Hester, Xerox Corporation <Alan.Hester@usa.xerox.com>

mailto:johnbo@microsoft.com
mailto:milt@autodesk.com
mailto:cohn@adobe.com
mailto:ddodds@opentext.com
mailto:awd@us.ibm.com
mailto:daduce@brookes.ac.uk
mailto:jerry.evans@Eng.sun.com
mailto:jferraio@adobe.com
mailto:fur@netscape.com
mailto:pgraff@apple.com
mailto:rick@bitflash.com
mailto:vincent.hardy@sun.com
mailto:lofton@qwestinternet.net
mailto:Alan.Hester@usa.xerox.com

Bob Hopgood, RAL (CCLRC) <frah@inf.rl.ac.uk>

Christophe Jolif, ILOG <jolif @ilog.fr>

Kelvin Lawrence, IBM <klawrenc@us.ibm.com>

ChrisLilley, W3C <chris@w3.org>

Philip Mansfield, Inso Corporation <philipm@schemasoft.com>

Kevin McCluskey, Netscape Communications Corporation <kmcclusk @netscape.com>
Tuan Nguyen, Microsoft Corporation <tuann@microsoft.com>

Troy Sandal, Visio Corporation <TroyS@visio.com>

Peter Santangeli, Macromedia <psantangeli @macromedia.com>

Haroon Sheikh, Corel Corporation <haroons@corel.ca>

Gavriel State, Corel Corporation <gavrielSQCOREL.CA>

Robert Stevahn, Hewlett-Packard Company <rstevahn@boi.hp.com>

Timothy Thompson, Kodak <timothy.thompson@kodak.com>

Shenxue Zhou, Quark <szhou@quark.com>

next contents properties index

WiC

HTML
4.0

mailto:frah@inf.rl.ac.uk
mailto:jolif@ilog.fr
mailto:klawrenc@us.ibm.com
mailto:chris@w3.org
mailto:philipm@schemasoft.com
mailto:kmcclusk@netscape.com
mailto:tuann@microsoft.com
mailto:TroyS@visio.com
mailto:psantangeli@macromedia.com
mailto:haroons@corel.ca
mailto:gavriels@COREL.CA
mailto:rstevahn@boi.hp.com
mailto:timothy.thompson@kodak.com
mailto:szhou@quark.com
http://validator.w3.org/

previous next contents properties index

1 Introduction

Contents

e 1.1About SVG

o 1.2 Stylable SVG vs. Exchange SVG

« 1.3SVG MIME type, file name extension and Macintosh filetype
o 1.4 Compatibility with Other Standards Efforts

o 1.5 Terminology

o 1.6 Definitions

1.1 About SVG

This specification defines the features and syntax for Scalable Vector Graphics (SVG).

SVG isalanguage for describing two-dimensional graphicsin XML. SVG allows for three types of
graphic objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), images and
text. Graphical objects can be grouped, styled, transformed and composited into previously rendered
objects. The feature set includes nested transformations, clipping paths, alpha masks, filter effects and
template objects.

SV G drawings can be interactive and dynamic. Animations can be defined and triggered either
declaratively (i.e., by embedding SV G animation elementsin SV G content) or via scripting.

Sophisticated applications of SVG are possible by use of supplemental scripting language with access to
SVG's Document Object Model (DOM), which provides complete access to all elements, attributes and
properties. A rich set of event handlers such as onmouseover and onclick can be assigned to any SVG
graphical object. Because of its compatibility and leveraging of other Web standards, features like
scripting can be done on XHTML and SV G el ements simultaneously within the same Web page.

SV G isalanguage for rich graphical content. For accessibility reasons, if there is an original source
document containing higher-level structure and semantics, it is recommended that that higher-level
information be made available somehow, either by making the origina source document available, or
making an alternative version available in an alternative format which conveys the higher-level
information, or by using SVG's facilities to include the higher-level information within the SV G content.
For suggested techniques in achieving greater accessibility, see Accessibility.

http://www.w3.org/Graphics/SVG/

1.2 Stylable SVG vs. Exchange SVG

The SVG language has two distinct forms, each with itsown DTD and its own MIME type. Each form
of SVG serves aparticular purpose.

Stylable SV G is the recommended storage format for SV G content targeted at web environments.
Stylable SV G iswhat its name suggests: it provides syntax for referencing and embedding style sheet
information. Style sheet information can be expressed in the style sheet language of choice, such as
Cascading Style Sheets[CSS2] or XSL Transformations [XSLT]). The ability to apply different style

sheetsto SV G content is a key feature in promoting accessibility.

Exchange SV G is alanguage primarily targeted at tool interoperability. Because Stylable SV G requires
the use of a styling language before rendering properties can be attached to graphics elements, and
because Stylable SVG allows arbitrary styling languages to be used, Stylable SVG is not suitable as a
self-defined, fully-contained language format for guaranteed interoperability. With Exchange SV G, all
rendering properties are expressed as XML attributes rather than using the syntax of a particular styling
language.

Because Stylable SV G is the recommended storage format for web environments, the majority of the
examples in this specification illustrate the use of Stylable SVG.

See the chapter on Exchange SV G for more information on Exchange SV G. The chapter details the

differences between Stylable SV G and Exchange SV G and includes various examples of Exchange SVG
content.

1.3 SVG MIME type, file name extension and
Macintosh filetype

The MIME typefor SVGis"i mage/ svg- xm ". The W3C will register this MIME type around the
time when SVG is approved as a W3C Recommendation.

It is recommended that SV G files have the extension™ . svg" (all lower case) on al platforms.

It is recommended that SV G files stored on Macintosh HFS file systems be given afiletype of " svg "
(al lower case, with a space character as the fourth |etter).

1.4 Compatibility with Other Standards Efforts

SV G leverages and integrates with other W3C specifications and standards efforts. By leveraging and
conforming to other standards, SV G becomes more powerful and makesit easier for users to learn how
to incorporate SVG into their Web sites.

The following describes some of the ways in which SVG maintains compatibility with, leverages and
integrates with other W3C efforts:

o SVGisan application of XML and is compatible with the "Extensible Markup Language (XML)

1.0" Recommendation [XML 10]
o SVG iscompatible with the "Namespacesin XML" Recommendation [XML-NS]
o SVG utilizes"XML Linking Language (XLink)" [XLINK] for URI referencing.

« SVG'ssyntax for referencing element IDs is a compatible subset of the ID referencing syntax in
"XML Pointer Language (XPointer)" [XPTR].

« SVG content can be styled by either CSS (see "Cascading Style Sheets (CSS) level 2"
specification [CSS2]) or XSL (see "XSL Transformations (XSLT) Version 1.0" [XSLT]).

« SVG supports relevant properties and approaches common to CSS and XSL, plus selected
semantics and features of CSS (see SVG's Use of Cascading Style Sheets).

e SVG can be used with "XSL Transformations (XSLT) Version 1.0" [XSLT]. In particular, XSLT
can style XML documents, with SV G output being a possible result of XSLT transformations.

« External style sheets are referenced using the mechanism documented in "Associating Style
Sheets with XML documents Version 1.0" [XML-SS].

« SVG includes a complete Document Object Model (DOM) and conforms to the "Document
Object Model (DOM) level 1" Recommendation [DOM 1]. The SVG DOM has a high level of

compatibility and consistency with the HTML DOM that is defined in the DOM level 1
specification. Additionally, the SVG DOM supports and incorporates many of the facilities
described in "Document Object Model (DOM) level 2" [DOM?2], including support for the CSS

object model and event handling.

« SVG incorporates some features and approaches that are part of the "Synchronized Multimedia
Integration Language (SMIL) 1.0 Specification” [SMIL1], including the 'switch' element, the
system-required attribute and the system-language attribute.

« SVG'sanimation features (see Animation) were developed in collaboration with the W3C

Synchronized Multimedia (SY MM) Working Group, devel opers of the Synchronized
Multimedia Integration Language (SMIL) 1.0 Specification [SMIL1]. SVG's animation features
incorporate and extend the general-purpose XML animation capabilities described in the "SMIL
Animation" specification [SMILANIM].

« SVG has been designed to allow future versions of SMIL to use animated or static SVG content
as media components.

o SVG attempts to achieve maximum compatibility with both HTML 4.0 [HTML4] and
XHTML(tm) 1.0 [XHTML]. Many of SVG'sfacilities are modeled directly after HTML,
including its use of CSS[CSS2], its approach to event handling, its approach to its Document
Object Model [DOM?2].

o SVG iscompatibility with W3C work on internationalization. References (W3C and otherwise)
include: [UNICODE] and [CHARMOD]. Also, see Internationalization Support.

o SVG iscompatible with W3C work on Web Accessibility [WAI]. Also, see Accessibility
Support.

In environments which support [DOM 2] for other XML grammars (e.g., XHTML [XHTML]) and which
also support SVG and the SVG DOM, a single scripting approach can be used simultaneously for both
XML documents and SV G graphics, in which case interactive and dynamic effects will be possible on
multiple XML namespaces using the same set of scripts.

1.5 Terminology

Within this specification, the key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" areto be
interpreted as described in RFC 2119 (see [RFC2119]). However, for readability, these words do not

appear in all uppercase lettersin this specification.

At times, this specification recommends good practice for authors and user agents. These
recommendations are not normative and conformance with this specification does not depend on their
realization. These recommendations contain the expression "We recommend ...", "This specification
recommends...", or some similar wording.

1.6 Definitions

basic shape

Standard shapes which are predefined in SV G as a convenience for common graphical
operations. Specifically: 'rect', ‘circle, 'dlipse, 'line, 'polyline, 'polygon'.

canvas

a surface onto which graphics elements are drawn, which can be real physical mediasuch asa
display or paper or an abstract surface such as a allocated region of computer memory. See the
discussion of the SV G canvasin the chapter on Coordinate Systems, Transformations and Units.

clipping path
acombination of 'path’, 'text’ and basic shapes which serve as the outline of a (in the absense of

antialiasing) 1-bit mask, where everything on the "inside" of the outlineis allowed to show
through but everything on the outside is masked out. See Clipping paths.

container element

An element which can have graphics elements and other container elements as child elements.
Specifically: 'svd, 'd, 'defs 'symbal’, ‘clipPath’, ‘mask’, 'pattern’, ‘'marker’, 'a’ and 'switch'.

current innermost SV G document fragment
The XML document sub-tree which starts with the most immediate ancestor 'svg' element of a
given SVG element

current SVG document fragment
The XML document sub-tree which starts with the outermost ancestor 'svg' element of agiven

SV G element, with the requirement that all container elements between the outermost 'svg' and
this element are all elementsin the SV G language

current transformation matrix (CTM)

Transformation matrices define the mathematical mapping from one coordinate system into
another using a 3x3 matrix using the equation [x'y' 1] =[x y 1] * matrix. The current
transformation matrix (CTM) defines the mapping from the user coordinate system into the
viewport coordinate system. See Coordinate system transformations

fill

font

glyph

The operation of painting the interior of a shape or the interior of the character glyphsin atext
string.

A font represents an organized collection of glyphsin which the various glyph representations
will share acommon look or styling such that, when a string of charactersis rendered together,
theresult is highly legible, conveys a particular artistic style and provides consi stent
inter-character alignment and spacing.

A glyph represents a unit of rendered content within afont. Often, there is a one-to-one
correspondence between characters to be drawn and corresponding glyphs (e.g., often, the
character "A" isrendered using a single glyph), but other times multiple glyphs are used to
render a single character (e.g., use of accents) or asingle glyph can be used to render multiple
characters (e.g., ligatures). Typically, aglyph is defined by one or more shapes such as a path,
possibly with additional information such as rendering hints that help a font engine to produce
legible text in small sizes.

graphics element

One of the element types that can cause graphics to be drawn onto the target canvas.
Specifically: 'path’, 'text’, 'rect’, ‘circl€, 'élipse, 'lin€, ‘polyline, ‘polygon’, 'image’ and 'use’.

graphics referencing element

A graphics element which uses areference to a different document or element as the source of its
graphical content. Specifically: 'use’ and 'image’.

local URI reference

mask

A Uniform Resource Identifier [URI] that does not include an <absoluteURI> or <relativeURI>

and thus represents a reference to an element/fragment within the current document. See
References and the 'defs element.

a container e ement which can contain graphics elements or other container elements which

define a set of graphicsthat isto be used as a semi-transparent mask for compositing foreground
objects into the current background. See Masks.

non-local URI reference

paint

shape

stroke

A Uniform Resource Identifier [URI] that includes an <absoluteURI> or <relativeURI> and thus

(usually) represents areference to a different document or an element/fragment within a different
document. See References and the 'defs’ element.

A paint represents away of putting color values onto the canvas. A paint might consists of both
color values and associated a pha values which control the blending of colors against already
existing color values on the canvas. SV G supports three types of built-in paint: color, gradients

and patterns.

A graphics element that is defined by some combination of straight lines and curves.
Specifically: 'path’, 'rect’, ‘circl€, 'elipse, 'lin€, ‘polyline, 'polygon’,

The operation of painting the outline of a shape or the outline of character glyphsin atext string.
SVG canvas

the canvas onto which the SV G content is rendered. See the discussion of the SV G canvasin the
chapter on Coordinate Systems, Transformations and Units.

SV G document fragment

The XML document sub-tree which starts with an 'svg' element. An SV G document fragment

can consist of a stand-alone SV G document, or afragment of a parent XML document enclosed
by an 'svg' element. When an 'svg' element is an descendant of another 'svg' element, there are

two SV G document fragments, one for each 'svg’ element. (One SV G document fragment is
contained within another SV G document fragment.)

SVG viewport

the viewport within the SV G canvas which defines the rectangular region into which SVG
content is rendered. See the discussion of the SV G viewport in the chapter on Coordinate
Systems, Transformations and Units.

transformation

A modification of the current transformation matrix (CTM) by providing a supplemental

transformation in the form of a set of simple transformations specifications (such as scaling,
rotation or trangation) and/or one or more transformation matrices. See Coordinate system

transformations

transformation matrix

Transformation matrices define the mathematical mapping from one coordinate system into
another using a 3x3 matrix using the equation [x'y' 1] =[x y 1] * matrix. See current
transformation matrix (CTM) and Coordinate system transformations

URI Reference

A Uniform Resource Identifier [URI] which serves as areferenceto afile or to an
element/fragment within afile. See References and the 'defs element.

user coordinate system

In general, a coordinate system defines locations and distances on the current canvas. The current
user coordinate system is the coordinate system that is currently active and which is used to
define how coordinates and lengths are located and computed, respectively, on the current
canvas. Seeinitial user coordinate system and Coordinate system transformations.

user space
A synonym for user coordinate system.

user units

A coordinate value or length expressed in user units represents a coordinate value or length in the
current user coordinate system. Thus, 10 user units represents a length of 10 unitsin the current

user coordinate system.
viewport
arectangular region within the current canvas onto which graphics elements are to be rendered.

See the discussion of the SV G viewport in the chapter on Coordinate Systems, Transformations
and Units.

viewport coordinate system

In general, a coordinate system defines |ocations and distances on the current canvas. The
viewport coordinate system is the coordinate system that is active at the start of processing of an
'svg' element, before processing the optional viewBox attribute. In the case of an SVG document
fragment that is embedded within a parent document which uses CSS to manage its layout, then
the viewport coordinate system will have the same orientation and lengths asin CSS, with the
origin at the top-left on the viewport. See The initial viewport and Establishing a new viewport.

viewport space
A synonym for viewport coordinate system.

viewport units

A coordinate value or length expressed in viewport units represents a coordinate value or length
in the viewport coordinate system. Thus, 10 viewport units represents alength of 10 unitsin the

viewport coordinate system.

previous next contents properties index

previous next contents properties index

2 SVG Concepts
Explaining the name: SVG

SVG stands for Scalable Vector Graphics, an XML grammar for stylable graphics, usable asan XML
Namespace.

Scalable

To be scalable means to increase or decrease uniformly. In terms of graphics, scalable means not being
limited to asingle, fixed, pixel size. On the Web, scalable means that that a particular technology can
grow to alarge number of files, alarge number of users, awide variety of applications. SVG, being a
graphics technology for the Web, is scalable in both senses of the word.

SVG graphics are scalable to different display resolutions, so that for example printed output uses the
full resolution of the printer and can be displayed at the same size on screens of different resolutions.
The same SV G graphic can be placed at different sizes on the same Web page, and re-used at different
sizes on different pages. SV G graphics can be magnified to see fine detail, or to aid those with low
vision.

SV G graphics are scalable because they can be referenced or included inside other SV G graphics,
allowing a complex illustration to be built up in parts, perhaps by several people. The symbol, marker

and font capabilities promote re-use of graphical components, maximise the advantages of HTTP
cacheing and avoid the need for a centralised registry of approved symbols.

Vector

Vector graphics contain geometric objects such as lines and curves. This gives greater flexibility
compared to raster-only formats (such as PNG and JPEG) which have to store information for every
pixel of the graphic. Typically, vector formats can also integrate raster images and can combine them
with vector information such as clipping paths to produce a complete illustration; SV G is no exception.

Since all modern displays are raster-oriented, the difference between raster-only and vector graphics
comes down to where they are rasterised; client sidein the case of vector graphics, as opposed to aready
rasterised on the server. SV G gives control over the rasterisation process, for example to allow
anti-aliased artwork without the ugly aliasing typical of low quality vector implementations. SVG aso
provided client-side raster filter effects, so that moving to avector format does not mean the loss of

popular effects such as soft drop shadows.

Graphics

Most existing XML grammars represent either textual information, or represent raw data such as
financial information. They typically provide only rudimentary graphical capabilities, often less capable
than the HTML 'img' element. SV G fills agap in the market by providing arich, structured description

of vector and mixed vector/raster graphics; it can be used standalone, or as an XML namespace with
other grammars.

XML

XML, aW3C Recommendation for structured information exchange, has become extremely popular and

is both widely and reliably implemented. By being written in XML, SV G builds on this strong
foundation and gains many advantages such as a sound basis for internationalisation, powerful
structuring capability, an object model, and so on. By building on existing, cleanly-implemented
specifications, XML-based grammars are open to implementation without a huge reverse engineering
effort.

Namespace

Itis certainly useful to have a standalone, SV G-only viewer. But SVG is aso intended to be used as one
component in amulti-namespace XML application. This multiplies the power of each of the namespaces
used, to allow innovative new content to be created. For example, SV G graphics may be included in a
document which uses any text-oriented XML namespace - including XHTML. A scientific document,
for example, might also use MathML [MATHML] for mathematics in the document. The combination

of SVG and SMIL leadsto interesting, time based, graphically rich presentations.

SVGisagood, genera-purpose component for any multi-namespace grammar that needs to use
graphics.

Stylable

The advantages of style sheetsin terms of presentational control, flexibility, faster download and
improved maintenance are now generally accepted, certainly for use with text. SV G extends this control
to the realm of graphics.

The combination of scripting, DOM and CSSis often termed "Dynamic HTML" and iswidely used for
animation, interactivity and presentational effects. SV G allows the same script-based manipulation of
the document tree and the style sheet.

Important SVG Concepts

Graphical Objects

With any XML grammar, consideration has to be given to what exactly is being modelled. For textual
formats, modelling istypically at the level of paragraphs and phrases, rather than individual nouns,
adverbs, or phonemes. Similarly, SVG models graphics at the level of graphical objects rather than
individual points.

SVG provides a genera path element, which can be used to create a huge variety of graphical objects,
and also provides common geometric objects such as rectangles and ellipses. These are convenient for
hand coding and may be used in the same ways as the more general path element. SVG providesfine
control over the coordinate system in which graphical objects are defined and the transformations that
will be applied during rendering.

file:///TR/REC-xml

Symbols

It would have been possible to define some standard symbols that SVG would provide. But which ones?
There would always be additional symbols for electronics, cartography, flowcharts, that people would
need that were not provided until the "next version”. SV G allows users to create, re-use and share their
own symbols without requiring a centralised registry. Communities of users can create and refine the
symbols that they need, without having to ask a committee. Designers can be sure exactly of the
graphical appearance of the symbols they use and not have to worry about unsupported symbols.

Symbols may be used at different sizes and orientations, and can be restyled to fit in with the rest of the
graphical composition.

Raster Effects

Many existing Web graphics use the filtering operations found in paint packages to create blurs,
shadows, lighting effects and so on. With the client-side rasterisation used with vector formats, such
effects might be thought impossible. SV G allows the declarative specification of filters, either singly or
in combination, which can be applied on the client side when the SV G is rendered. These are specified
in such away that the graphics are still scalable and displayable at different resolutions.

Fonts

Graphically rich material is often highly dependent on the particular font used and the exact spacing of
the glyphs. In many cases, designers convert text to outlines to avoid any font substitution problems.
This means that the original text is not present and thus seachability and accessibility suffer. In response
to feedback from designers, SV G includes font elements so that both text and graphical appearance are
preserved.

Animation

Animation can be produced via script-based manipulation of the document, but scripts are difficult to
edit and interchange between authoring toolsis harder. Again in response to feedback from the design
community, SV G includes declarative animation elements which were designed collaboratively by the
SVG and SYMM working groups. This allows the animated effects common in existing Web graphics to
be expressed in SVG.

previous next contents properties index

previous next contents properties index

3 Basic Data Types and Interfaces

Contents

« 3.1 Basic datatypes
o 3.2 Basic DOM interfaces

3.1 Basic data types

The common data types for SVG's properties and attributes fall into the following categories:

« <angle>: An angle valueisa<number> optionally followed immediately with an angle unit identifier.
Angle unit identifiers are:

0 deg: degrees
o grad: grads
o rad: radians

For properties defined in [CSS2], an angle unit identifier must be provided. For SV G-specific
attributes and properties, the angle unit identifier is optional. If not provided, the anglevalueis
assumed to be in degrees.

The corresponding SVG DOM interface definition for <angle> is SV GAngle.

« <color>: The basic type <color> is a CSS2-compatibl e specification for a color in the SRGB color
space [SRGB]. <color> appliesto SVG's use of the 'color’ property and is a component of the
definitions of properties 'fill', 'stroke’ and 'stop-color', which also offer optional 1CC-based color
specifications.

A <color> is either a keyword or a numerical RGB specification. The list of keyword color namesis:
aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white, and
yellow. These 16 colors are defined in HTML 4.0 ((HTML4]). The format of an RGB valuein
hexadecimal notation isa'# immediately followed by either three or six hexadecimal characters. The
three-digit RGB notation (#rgb) is converted into six-digit form (#rrggbb) by replicating digits, not by
adding zeros. For example, #fb0 expands to #ffbb00. This ensures that white (#ffffff) can be specified
with the short notation (#fff) and removes any dependencies on the color depth of the display. The
format of an RGB value in the functional notation is 'rgb(’ followed by a comma-separated list of three
numerical values (either three integer values or three percentage values) followed by). The integer
value 255 corresponds to 100%, and to F or FF in the hexadecimal notation: rgh(255,255,255) =
rgb(100%,100%,100%) = #FFF. White space characters are allowed around the numerical values. All
RGB colors are specified in the SRGB color space (see [SRGB]). Using sSRGB provides an
unambiguous and objectively measurable definition of of the color, which can be related to
international standards (see [COLORIMETRY]).

The corresponding SVG DOM interface definitions for <color> are defined in [DOM2-CSS]; in
particular, see the [DOM2-CSS-RGBCOL OR]. SVG's extension to color, including the ability to
specify ICC-based colors, are represented in DOM interface SV GColor.

« <coordinate>: The format of a <coordinate> is a<number> optionally followed immediately by a CSS
unit identifier.
If the <coordinate> is expressed as a simple number without a CSS unit identifier (e.g., 48), then the
value represents a coordinate value in the current user coordinate system.
If one of the CSS unit identifiersis provided (e.g., 12mm), the <coordinate> represents the

X-coordinate in the user coordinate system that is the given distance (measured in the viewport
coordinate system) from the origin of the user coordinate system. (See Processing rules for CSS units

and percentages.)

If apercentage is provided (e.g., 10%), the <coordinate> represents the X-coordinate in the user
coordinate system that is the given distance (measured as a percentage of the width of the viewport
coordinate system) from the origin of the user coordinate system. (See Processing rules for CSS units

and percentages.)
Within the SVG DOM, a <coordinate> is represented as an SV GL ength since both values have the
same syntax (although the semantics are not identical).

« <frequency>: Frequency values are used with aural cascading style sheets (see [CSS2]). A frequency
valueisa<number> immediately followed by afrequency unit identifier. Frequency unit identifiers
are:

o Hz: Hertz
o kHz: kilo Hertz

Frequency values may not be negative.
The corresponding SVG DOM interface definitions for <frequency> are defined in [DOM2-CSS].

« <integer>: An <integer> is specified as an optional sign character ('+' or '-', with '+' being the default)
followed by one or more digits"0" to "9".
Unless stated otherwise for a particular attribute or property, the range for a <integer> encompasses (at
aminimum) -2147483648 to -2147483647.
Within the SVG DOM, an <integer> is represented as an SV Glnteger.

« <length>: A length is a distance measurement. The format of a <length> is a <number> optionally
followed immediately by a CSS unit identifier. (Note that a <number> has different formulations
depending on whether it is applied to a CSS property or an XML attribute.)

If the <length> is expressed as a value without a CSS unit identifier (e.g., 48), then the <length>
represents a distance in the current user coordinate system.

If one of the CSS unit identifiersis provided (e.g., 12mm), then the <length> represents a width, height
or length value in the viewport coordinate system, depending on the value which is being represented.
(See Processing rules for CSS units and percentages.)

If apercentage is provided (e.g., 10%), then the given percentage represents a percentage of the width,
height or weighted average of the width and height of the viewport, depending on the value which is
being represented. (See Processing rules for CSS units and percentages.)

Within the SVG DOM, a<length> is represented as an SV GL ength.

o <list of xxx> (where xxx represents a value of sometype): A list consists of a separated sequence of
values. The specification of listsis different for CSS property values than for XML attribute values.

o Listsin CSS property values are comma-separated, with optional white space before or after
the comma.

o Listswithin SVG's XML attributes are either comma-separated, with optional white space
before or after the comma, or white space-separated.

White space in lists is defined as one or more of the following consecutive characters:. " space”
(Unicode code 32), "tab" (9), "line feed" (10), "carriage return” (13) and "form-feed" (12).
Within the SVG DOM, a<list of xxx> is represented by various custom interfaces, such as
SVGTransformList.

« <number> (real number value): The specification of real number valuesis different for CSS property
values than for XML attribute values.
o CSS2[CSS2?] statesthat a property value which is a<number> is specified in decimal notation
(i.e., a<decimal-number>), which consists of either an <integer>, or an optional sign character

followed by zero or more digits followed by adot (.) followed by zero or more digits with at
least one digit required either before or after the dot. Thus, for conformance with CSS2, any
property in SV G which accepts <number> valuesis specified in decimal notation only.

o For SVG's XML attributes, to provide as much scalability in numeric values as possible, real
number values can be provided either in decimal notation or in scientific notation (i.e., a
<scientific-number>), which consists of a <decimal-number> immediately followed by the
letter "e" or "E" immediately followed by an <integer>.

Unless stated otherwise for a particular attribute or property, a <number> has the capacity for at least a
single-precision floating point number (see [ICC32]) and has arange (at a minimum) of -3.4e+38F to
+3.4e+38F.

It is recommended that higher precision floating point storage and computation be performed on
operations such as coordinate system transformations to provide the best possible precision and to
prevent round-off errors.

Conforming High-Quality SVG Viewers are required to use at least double-precision floating point
(see [ICC32]) intermediate cal culations on certain numerical operations.

Within the SVG DOM, a <number> is represented as an SV GNumber.

« <paint>: Thevaluesfor properties 'fill' and 'stroke' are specifications of the type of paint to use when
filling or stroking a given graphics element. The available options and syntax for <paint> is described
in Specifying paint.

Within the SVG DOM, <paint> is represented as an SV GPaint.

« <percentage>: The format of a percentage value is a <number> immediately followed by a'%'.

Percentage values are always relative to another value, for example alength. Each attribute or property
that allows percentages also defines the reference distance measurement to which the percentage
refers.

Within the SVG DOM, a <percentage> is represented as an SV GL ength.

o <time>: A timevalueisa<number> immediately followed by atime unit identifier. Time unit
identifiers are:

o ms. milliseconds
o S. seconds

Time values are used in CSS properties and may not be negative.
The corresponding SVG DOM interface definitions for <time> are defined in [DOM2-CSS].

« <transform-list>: The detailed description of the possible values for a <transform-list> are detailed in
Modifying the User Coordinate System: the transform attribute.

Within the SVG DOM, <transform-list> is represented as an SV GTransformList.

« <uri> (Uniform Resource Identifiers [URI] references): A URI is the address of aresource on the Web.
For the specification of URI referencesin SVG, see URI references.

Within the SVG DOM, <uri> is represented as a DOM String.

3.2 Basic DOM interfaces

The following interfaces are defined below: SVGAnNgle, SV Ginteger, SV GLength, SVGNumber, SV GRect,
SVGLidt, SVGLengthList, SVGUnitTypes.

Interface SVGANgle

The SVGAnNgle interface corresponds to the <angle> basic data type.

IDL Definition

interface SVGAngl e {
/1 Angle Unit Types
constant unsigned short SVG ANGLETYPE_UNKNOMN
constant unsigned short SVG ANGLETYPE_UNSPECI FI ED
constant unsigned short SVG ANGLETYPE_DEG
constant unsigned short SVG ANGLETYPE_RAD
constant unsigned short SVG ANGLETYPE GRAD

TRNTRTIRTINT
rowbrRo

readonly attribute unsigned short unitType;
attribute float val ue;
attribute float val uel nSpeci fi edUnits;
attribute DOVString val ueAsString;
readonly attribute fl oat ani mat edVal ue;

voi d newval ueSpeci fiedUnits (in unsigned short unitType, in float val uelnSpecifiedUnits)
rai ses(SVGException);

voi d convert ToSpecifiedUnits (in unsigned short unitType)
rai ses(SVGException);

Definition group Angle Unit Types
Defined constants

SVG_ANGLETYPE_UNKNOWN Theunit typeis not one of predefined unit types. Itis
invalid to attempt to define a new value of thistype or
to attempt to switch an existing value to thistype.

SVG_ANGLETYPE_UNSPECIFIED No unit type was provided (i.e., a unitless value was
specified). For angles, a unitless value is treated the
same as if degrees were specified.

SVG_ANGLETYPE_DEG The unit type was explicitly set to degrees.
SVG_ANGLETYPE_RAD The unit typeisradians.
SVG_ANGLETYPE_GRAD The unit typeis grads.

Attributes
readonly unsigned short unitType
The type of the value as specified by one of the constants specified above.
float value

The angle value as afloating point value, in degrees. Setting this attribute will cause
valuel nSpecifiedUnits and valueAsString to be updated automatically to reflect this setting.

float valuelnSpecifiedUnits
The angle value as afloating point value, in the units expressed by unitType. Setting this

attribute will cause value and valueAsString to be updated automatically to reflect this setting.
DOM String valueAsString

The angle value as a string value, in the units expressed by unitType. Setting this attribute will
cause value and val uelnSpecifiedUnits to be updated automatically to reflect this setting.

readonly float animatedVaue

If the given attribute or property is being animated, contains the current animated value of the
attribute or property. If the given attribute or property is not currently being animated, contains
the same value as value. The value isin degrees.

Methods
newV alueSpecifiedUnits

Reset the value as a number with an associated unitType, thereby replacing the values for all of
the attributes on the object.

Parameters

inunsigned short unitType The unitType for the angle value (e.g.,
SVG_ANGLETYPE_DEG).

in float valuel nSpecifiedUnits The angle value.
No Return Value
Exceptions
SVGException SVG_WRONG_TYPE_ERR: Raised if aninvalid unitTypeis
specified.
convertToSpecifiedUnits

Preserve the same value, but convert to the specified unitType. Object attributes unitType,
valueAsSpecified and valueAsString might be modified as a result of this method,

Parameters

in unsigned short
unitType

No Return Value
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if aninvalid unitTypeis
specified.

The unitType to switch to (e.g., SYG_ANGLETYPE_DEGQG).

Interface SVGInteger
The SV GlInteger interface corresponds to the <integer> basic data type.

IDL Definition

interface SVA nteger {
attribute | ong val ue;
readonly attribute | ong ani mat edVal ue;

};

Attributes

long value
The value as an integer.
readonly long animatedVaue

If the given attribute or property is being animated, contains the current animated value of the
attribute or property. If the given attribute or property is not currently being animated, contains
the same value as DOM property value.

Interface SVGLength

The SVGLength interface corresponds to the <length> basic data type.

IDL Definition

interface SVG.ength {
/1 Length Unit Types
constant unsigned short SVG _LENGTHTYPE_UNKNOWN
constant unsigned short SVG LENGTHTYPE_NUVBER
constant unsigned short SVG LENGTHTYPE_PERCENTAGE
constant unsigned short SVG LENGTHTYPE_EMS
constant unsigned short SVG _LENGTHTYPE_EXS
constant unsigned short SVG LENGTHTYPE_PX
constant unsigned short SVG LENGTHTYPE _CM
constant unsigned short SVG LENGTHTYPE_ MM
constant unsigned short SVG LENGTHTYPE I N
constant unsigned short SVG LENGTHTYPE_PT

constant unsigned short SVG LENGTHTYPE_PC

HoexNoahuoNRO

readonly attribute unsigned short unitType;
attribute fl oat val ue;
attribute float val uel nSpeci fi edUnits;
attribute DOVString val ueAsStri ng;
readonly attribute fl oat ani mat edVal ue;

voi d newval ueSpecifiedUnits (in unsigned short unitType, in float val uel nSpecifiedUnits)
rai ses(SVCGException);

voi d convert ToSpecifiedUnits (in unsigned short unitType)
rai ses(SVCException);

Definition group Length Unit Types
Defined constants

SVG_LENGTHTYPE_UNKNOWN The unit typeis not one of predefined unit types. Itis
invalid to attempt to define a new value of thistype
or to attempt to switch an existing value to this type.

SVG_LENGTHTYPE_NUMBER No unit type was provided (i.e., a unitless value was
specified), which indicates avalue in user units.

SVG_LENGTHTYPE_PERCENTAGE A percentage value was specified.

SVG LENGTHTYPE _EMS A vaue was specified using the "em" units defined in
CSSs2.

SVG_LENGTHTYPE_EXS A value was specified using the "ex" units defined in
CSSs2.

SVG_LENGTHTYPE_PX A value was specified using the "px" units defined in

CSSs2.

SVG_LENGTHTYPE_CM A value was specified using the "cm™ units defined in
CSSs2.

SVG _LENGTHTYPE MM A vaue was specified using the "mm" units defined
in CSS2.

SVG_LENGTHTYPE_IN A value was specified using the "in" units defined in
CSS2.

SVG_LENGTHTYPE_PT A value was specified using the "pt" units defined in
CSSs2.

SVG_LENGTHTYPE_PC A vaue was specified using the "pc" units defined in
CSS2.

Attributes
readonly unsigned short unitType
The type of the value as specified by one of the constants specified above.
float value

The value as an floating point value, in user units. Setting this attribute will cause
valuel nSpecifiedUnits and valueAsString to be updated automatically to reflect this setting.

float valuel nSpecifiedUnits

The value as an floating point value, in the units expressed by unitType. Setting this attribute
will cause value and valueAsSitring to be updated automatically to reflect this setting.

DOM String valueAsString

The value as a string value, in the units expressed by unitType. Setting this attribute will cause
value and valuel nSpecifiedUnits to be updated automatically to reflect this setting.

readonly float animatedVaue

If the given attribute or property is being animated, contains the current animated value of the
attribute or property. If the given attribute or property is not currently being animated, contains
the same value as DOM property value. The value isin user units.

Methods
newV alueSpecifiedUnits

Reset the value as a number with an associated unitType, thereby replacing the values for all of
the attributes on the object.

Parameters

inunsigned short unitType The unitType for the value (e.g.,
SVG_LENGTHTYPE_MM).

in float valuelnSpecifiedUnits The new value.
No Return Value
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if aninvalid unitTypeis
specified.
convertToSpecifiedUnits

Preserve the same value, but convert to the specified unitType. Object attributes unitType,
valueAsSpecified and valueAsString might be modified as a result of this method,

Parameters

in unsigned short

unitType The unitType to switch to (e.g., SYG_LENGTHTYPE_MM).

No Return Value
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if aninvalid unitTypeis
specified.

Interface SVGNumber

The SVGNumber interface corresponds to the <number> basic data type.

IDL Definition

interface SVG\unber {
attribute float val ue;
readonly attribute float ani matedVal ue;

};

Attributes
float value
The value as afloating point number.
readonly float animatedVaue

If the given attribute or property is being animated, contains the current animated value of the
attribute or property. If the given attribute or property is not currently being animated, contains
the same value as DOM property value.

Interface SVGRect

Rectangles are defined as consisting of a (x,y) coordinate pair identifying a minimum X value, aminimum Y
value, and awidth and height, which are usually constrained to be non-negative.

IDL Definition

interface SVGRect {
attri bute SVG\unber x;
attribute SVG\unber vy;
attri bute SV@Wwunber wi dth;
attri bute SVG\unber hei ght;

Attributes
SVGNumber x
Corresponds to attribute x on the given element.
SVGNumber y
Corresponds to attribute y on the given element.
SVGNumber width
Corresponds to attribute width on the given element.

SVGNumber height
Corresponds to attribute height on the given element.

Interface SVGList

Thisinterface defines a set of generic list handling attributes and methods.

IDL Definition

interface SVGist {
readonly attribute unsigned | ong nunber Of |t ens;

voi d clear ();

Object initialize (in Object newtem)
rai ses(SVCException);

oj ect createltem();

oject getltem (in unsigned |ong index)
rai ses(DOVException);

Obj ect insertBefore (in Object newitem in unsigned |ong index)
rai ses(SVGException);

oject replace (in Object newitem in unsigned | ong index)
rai ses(DOVException, SVGException);

Obj ect rempve (in unsigned |ong index)
rai ses(DOVException);

oj ect append (in Object newltem)
rai ses(SVGException);

Attributes
readonly unsigned long numberOfltems
The number of itemsin thelist.
M ethods
clear
Clears al existing current items from the list, with the result being an empty list.
No Parameters
No Return Value
No Exceptions
initialize
Clears al existing current items from the list and re-initializes the list to hold the single item
specified by the parameter.
Parameters

in Object newltem The item which should become the only member of the list.
Return value

Object Theitem being inserted into the list.
Exceptions

SVGException SVG_WRONG_TYPE _ERR: Raised if parameter newltem isthe
wrong type of object for the given list.

createltem

Creates an initialized item of the appropriate type for thislist.
No Parameters
Return value
Object The created item.
No Exceptions
getitem
Returns the specified item from the list.
Parameters

inunsigned long index Theindex of the item from the list which isto be returned. The
first itemis number 1.

Return value
Object The selected item.
Exceptions

DOMException INDEX_SIZE ERR: Raised if the index number islessthan 1 or
greater than number_of _items.

insertBefore
Inserts anew item into the list at the specified position.
Parameters
in Object newltem Theitem which isto be inserted into the list.
inunsigned long index Theindex of the item before which the new itemisto be
inserted. If the index islessthan or equal to 1, then the new
item isinserted at the front of the list. If theindex is greater
than number_of_items, then the new item is appended to the
end of the list.
Return value

Object Theinserted item.
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem isthe
wrong type of object for the given list.

replace
Replaces an existing item in the list with a new item.
Parameters

in Object newltem The item which isto be inserted into the list.
inunsigned long index Theindex of the item which isto be replaced.

Return value
Object Theinserted item.
Exceptions

DOMException INDEX_SIZE_ERR: Raised if the index number islessthan 1 or
greater than number_of _items.

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem isthe
wrong type of object for the given list.

remove
Removes an existing item from the list.
Parameters
inunsigned long index Theindex of the item which isto be removed.
Return value
Object Theremoved item.
Exceptions

DOMException INDEX_SIZE_ERR: Raised if the index number islessthan 1 or
greater than number_of _items.

append
Inserts a new item at the end of thelist.

Parameters
in Object newltem The item which isto be inserted into the list.

Return value
Object Theinserted item.

Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem isthe
wrong type of object for the given list.

Interface SVGLengthList

Used for values that can be expressed as an array of SV GLengths.

The various methods inherited from SV GList, which are defined in SV GList to accept parameters and return
values of type Object, must receive parameters of type SV GLength and return values of type SV GL ength.

IDL Definition

interface SVG.engthList : SVQ.ist;

Interface SVGUnitTypes

The SV GUnitTypes interface defines a commonly used set of constants and is a base interface used by
SV GGradientElement, SV GPatternElement, SV GClipPathElement, SV GMaskElement, and

SV GFilterElement.

IDL Definition

interface SVGUnit Types {
/1 Unit Types
constant unsigned short SVG UN T_TYPE_UNKNOMN
constant unsigned short SVG UN T_TYPE_USERSPACE
constant unsigned short SVG UN T_TYPE_USERSPACEONUSE
constant unsigned short SVG UN T_TYPE_OBJECTBOUNDI NGBOX

wnNkRo

Definition group Unit Types
Defined constants

SVG _UNIT_TYPE_UNKNOWN The type is not one of predefined types. It is
invalid to attempt to define a new value of
this type or to attempt to switch an existing
valueto thistype.

SVG_UNIT_TYPE_USERSPACE Corresponds to val ue userSpace.
SVG_UNIT_TYPE_USERSPACEONUSE Corresponds to value userSpaceOnUse.
SVG_UNIT_TYPE_OBJECTBOUNDINGBOX Corresponds to value objectBoundingBox.

previous next contents properties index

previous next contents properties index

4 SVG Rendering Model

Contents

e 4.1 Introduction

e 4.2 The painters model
e 4.3 Rendering Order

o 4.4 Grouping
e 4.5 Types of graphics elements

o 4.5.1 Painting shapes and text

o 4.5.2 Painting raster images

¢ 4.6 Filtering painted regions

o 4.7 Clipping, masking and object opacity

e 4.8 Parent Compositing

4.1 Introduction

Implementations of SV G are expected to behave as though they implement arendering (or imaging)
model corresponding to the one described in this chapter. A real implementation is not required to
implement the model in thisway, but the result on any device supported by the implementation shall
match that described by this model.

The appendix on conformance requirements describes the extent to which an actual implementation may

deviate from this description. In practice an actual implementation will deviate slightly because of
limitations of the output device (e.g. only alimited range of colors might be supported) and because of
practical limitationsin implementing a precise mathematical model (e.g. for realistic performance curves
are approximated by straight lines, the approximation need only be sufficiently precise to match the
conformance requirements.)

4.2 The painters model

SVG uses a"painters model” of rendering. Paint is applied in successive operations to the output device

such that each operation paints over some area of the output device. When the area overlaps a previously
painted area the new paint partially or completely obscures the old. When the paint is not completely

opague the result on the output device is defined by the (mathematical) rules for compositing described
under Simple Alpha Blending.

4.3 Rendering Order

Elementsin an SVG document fragment have an implicit drawing order, with the first elementsin the
SV G document fragment getting "painted"” first. Subsequent elements are painted on top of previously
painted elements.

4.4 Grouping

Grouping elements such as the 'g' have the effect of producing atemporary separate canvas onto which

child elements are painted. Upon the completion of the group, the effect isasif the group's canvasis
painted onto the ancestors canvas using the standard rendering rules for individual graphic objects.

4.5 Types of graphics elements

SV G supports three fundamental types of graphics elements that can be rendered onto the canvas:

« Shapes, which represent some combination of straight line and curves

« Text, which represents some combination of character glyphs

« Raster images, which represent an array of values that specify the paint color and opacity (often
termed alpha) at a series of points on arectangular grid. (SV G requires support for specified
raster image formats under conformance requirements.)

4.5.1 Painting shapes and text

Shapes and text can befilled (i.e., apply paint to the interior of the shape) and stroked (i.e., apply paint

along the outline of the shape). A stroke operation is centered on the outline of the object; thus, in effect,
half of the paint falls on the interior of the shape and half of the paint falls outside of the shape.

For certain types of shapes, marker symbols (which themselves can consist of any combination of
shapes, text and images) can be drawn at selected vertices. Each marker symbol is painted asiif its
graphical content were expanded into the SV G document tree just above the shape object which isusing
the given marker symbol. The graphical contents of a marker symbol are rendered using the same
methods are graphics elements. Marker symbols are not applicable to text.

Thefill is painted first, then the stroke, and then the marker symbols. The marker symbols are rendered
in order along the outline of the shape, from the start of the shape to the end of the shape.

Each fill and stroke operation has its own opacity settings; thus, you can fill and/or stroke a shape with a
semi-transparently drawn solid color, with different opacity values for the fill and stroke operations.

Thefill and stroke operations are entirely independent painting operations; thus, if you both fill and
stroke a shape, half of the stroke will be painted on top of part of thefill.

SV G supports the following built-in types of paint which can be used in fill and stroke operations:

« Solid color
« Gradients (linear and radial)

o Patterns

4.5.2 Painting raster images

When araster image is rendered, the original samples are "resampled” using standard algorithms to
produce samples at the positions required on the output device. Resampling requirements are discussed
under conformance requirements.

4.6 Filtering painted regions

SVG alows any painting operation to be filtered. (See Filter Effects)
In this case the result must be as though the paint operations had been applied to an intermediate canvas,

of asize determined by the rules given in Filter Effects then filtered by the processes defined in Filter
Effects.

4.7 Clipping, masking and object opacity

SV G dlows any painting operation to be limited to a sub-region of the output device by clipping and
masking. Thisis described in Clipping, Masking and Compositing

Clipping uses a path to define aregion of the output device to which paint can be applied. Any painting
operation executed within the scope of the clipping must be rendered such that only those parts of the
device that fall within the clipping region are affected by the painting operation. "Within" is defined by
the same rules used to determine the interior of a path for painting.

Masking uses the alpha channel or color information in areferenced SVG element to restrict the painting
operation. In this case the opacity information within the alpha channel is used to define the region to
which paint can be applied - any region of the output device that, after resampling the alpha channel
appropriately, has a zero opacity must not be affected by the paint operation. All other regions
composite the paint from the paint operation onto the the output device using the algorithms described in
Clipping, Masking and Compositing.

A supplemental masking operation may also be specified by applying a"global" opacity to a set of
rendering operations. In this case the mask defines an infinite alpha channel with a single opacity. (See
‘opacity’ property.)

In al cases the SV G implementation must behave as though all painting and filtering performed within
the clip or masksis donefirst to an intermediate (imaginary) canvas then filtered through the clip area or
masks. Thusif an area of the output device is painted with a group opacity of 50% using opague red
paint followed by opague green paint the result is as though it had been painted with just 50% opaque
green paint. Thisis because the opagque green paint completely obscures the red paint on the
intermediate canvas before the intermediate as a whole is rendered onto the output device.

4.8 Parent Compositing

SV G document fragments can be semi-opaque. In many environments (e.g., web browsers), the SVG
document fragment has a final compositing step where the document as awhole is blended translucently
into the background canvas.

previous next contents properties index

previous next contents properties index

5 Styling

Contents

« 5.1 How styling relates to Stylable SVG and Exchange SVG
« 5.2 Applying style sheets to Stylable SVG content

» 5.3 Referencing external style sheets

o 5.4 Features from CSS used by SVG

o 5.5 The'style' element

o 5.6 The style attribute

« 5.7 Specifying the default style sheet language

« 5.8 Cascading and inheritance of properties

¢ 5.9 The scope/range of styles

o 5.10 The'display' property

o 5.11 Default style sheet for SVG
o 5.12 Aural style sheets

« 5.13 DOM interfaces

5.1 How styling relates to Stylable SVG and
Exchange SVG

The SVG language comes in two forms:. Stylable SVG and Exchange SVG. Stylable SVG assigns

rendering properties through a style sheet language such as CSS or XSL Transformations and provides
syntax for embedding style sheets and style declaration blocks within Stylable SVG content. Exchange
SV G assigns rendering properties via XML attributes on graphics elements and does not provide syntax
for embedding style sheets and style declaration blocks within Exchange SV G content. Since this
chapter describes how styling relates to SV G, the language constructs described in this chapter applie
only to Stylable SVG. However, since Stylable SV G and Exchange SV G share the same semantics and
inheritance models, the semantic model for applying rendering properties as described in this chapter
apply to both Stylable SVG and Exchange SVG.

This chapter describes the rules for referencing and embedding style sheets for use with Stylable SVG. It
provides alist of the styling properties and details the various cascading and inheritance rules. It also

details the features that are specific to Stylable SV G, such asthe 'style’ element and the 'styl€' attribute.

5.2 Applying style sheets to Stylable SVG content

Stylable SV G content can be styled by either CSS (see "Cascading Style Sheets (CSS) level 2"
specification [CSS2]) or XSL (see"XSL Transformations (XSLT) Version 1.0" [XSLT]).

SV G content can reference external style sheets (see Referencing external style sheets) or embed style
sheets within an SV G 'style’ element or both.

CSS style declarations can also be specified within style attributes on particular elements. For many

applications, element-specific styling is convenient and advantageous, but in situations where multiple
elements have common styling, it is usually better to express styling through through the 'style' element

or, even better, through external style sheets which may be shared by several related SV G graphics.

Styling the same document using both CSS and X SL style sheets is not recommended at thistime as the
processing model for thisis not well-defined.

5.3 Referencing external style sheets

External style sheets are referenced using the mechanism documented in "Associating Style Sheets with
XML documents Version 1.0" [XML-SS].

5.4 Features from CSS used by SVG

SV G supports various relevant properties and approaches common to CSS and XSL, plus selected
semantics and features defined in CSS2 (see the "Cascading Style Sheets (CSS) level 2"
Recommendation [CSS2].

SV G uses styling properties to describe many of its document parameters. In particular, SVG uses
styling properties for the following:

o Parameters which are clearly visual in nature and thus lend themselves to styling. Examples
include al attributes that define how an object is"painted” such asfill and stroke colors,
linewidths and dash styles.

» Parameters having to do with text styling such as 'font-family' and 'font-size'.
« Parameters which impact the way that graphical elements are rendered, such as specifying
clipping paths, masks, arrowheads, markers and filter effects.
SV G uses much of the syntax and semantics of CSS in the definition of its properties. Specifically, SVG
uses the following facilities from CSS:
o CSS2 syntax rules (references. [CSS2 syntax and basic data types] and [The grammar of CSS2]).

o CSS2 allowable datatypes. (The normative reference is [CSS2 syntax and basic data types]),
with the exception that SV G allows <length> and <angle> values without a unit specifier. See

http://www.w3.org/TR/REC-CSS2/syndata.html
http://www.w3.org/TR/REC-CSS2/grammar.html
http://www.w3.org/TR/REC-CSS2/syndata.html

Units.)

In an SV G user agent that supports CSS style sheets, the following facilities from [CSS2] must be
supported:

o CSS2 selectors within style sheets (reference: [Selectors)).

o External CSS style sheets [XML-SS], CSS style sheets within 'style’ elements and CSS
declaration blocks within style attributes attached to specific SVG elements.

e CSS2 rulesfor assigning property values, cascading and inheritance.
« @font-face, @media, @import and @charset rules within style sheets.

o CSS2's dynamic pseudo-classes :hover, :active and :focus and pseudo-classes :first-child,
wvisited, :link and :lang. The remaining CSS2 pseudo-classes, including those having to do with
generated content, are not part of the SV G language definition. (Note: an SVG element gains
focuswhen it is selected. See Text selection.)

« For the purposes of aural media, SV G represents a CSS-stylable XML grammar. In user agents
that support aural style sheets, CSS aural style properties can be applied as defined in [CSS2].

(See Aurdl style sheets.)

An SV G user agent is required to support the syntax and semantics of the following properties from

[CSS2]:
« Font properties:
o 'font-family'
o 'font-style
o ‘font-variant'
o 'font-weight'
o 'font-stretch’
o ‘font-size

o ‘'font-size-adjust'

o ‘font'

o Text properties.
0 'text-decoration'
o 'letter-spacing'
o 'word-spacing'
o 'direction’

0 'unicode-bidi'
« Other propertiesfor visual media:
o 'vishility'
o ‘display’
o 'overflow' (Only applicable to elements which establish a new viewport)

http://www.w3.org/TR/REC-CSS2/selector.html
http://www.w3.org/TR/REC-CSS2/syndata.html#q8
http://www.w3.org/TR/REC-CSS2/cascade.html
http://www.w3.org/TR/REC-CSS2/fonts.html#font-descriptions
http://www.w3.org/TR/REC-CSS2/media.html#at-media-rule
http://www.w3.org/TR/REC-CSS2/cascade.html#at-import
http://www.w3.org/TR/REC-CSS2/syndata.html#x66
http://www.w3.org/TR/REC-CSS2/selector.html#dynamic-pseudo-classes
http://www.w3.org/TR/REC-CSS2/selector.html#q15
http://www.w3.org/TR/REC-CSS2/generate.html
http://www.w3.org/TR/REC-CSS2/aural.html

o 'clip' (Only applicable to outermost 'svg’)

o 'color' isused to provide a potential indirect value (currentColor) for the 'fill' and 'stroke'
properties. (The SV G properties which support color allow a color specification which is
extended from CSS2 to accommodate color definitions in arbitrary color spaces. See
Color profile descriptions and @color-profile.

o ‘'cursor'

Additionally, SV G defines an @color-profile at-rule [CSS2-ATRULES] for defining color profiles so
that ICC color profiles can be applied to SVG content.

5.5 The 'style' element

The 'style’ element is only present in Stylable SVG. It is not included in the definition of Exchange
SVG.

<! ELEMENT styl e (#PCDATA) >
<I ATTLI ST style
Y%t dAttrs;
type % ont ent Type; #REQUI RED >

Attribute definitions:
type = content-type

This attribute specifies the style sheet language of the element’s contents and overrides the
default style sheet language. The style sheet language is specified as a content type (e.g.,
"text/css"). Authors must supply avalue for this attribute; there is no default value for this
attribute.

Animatable: no.

Attributes defined elsewhere:
%%ostdAttrs;.

The 'style’ element allows authors to embed style sheets within SV G content.
The syntax of style data depends on the style sheet language.

Some style sheet implementations might allow awider variety of rulesin the 'style’ element than in the
style attribute that is available to container elements and graphics elements. For example, with CSS

[CSS2], rules can be declared within a'style’ element that cannot be declared within a style attribute.

The following is an example of defining and using atext style using a CSS interna style sheet:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ \D- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dtd" >
<svg wi dth="4in" hei ght="3in">
<def s>
<style type="text/css"><![CDATA
.TitleText { font-size: 16; font-famly: Helvetica }]]>
</style>

</ def s>
<text class="TitleText">Here is nmy title</text>
</ svg>

Download this example

Note how the CSS style sheet is placed within a CDATA construct (i.e., <! [CDATA[...]]1>),
which is necessary since CSS style sheets are not expressed in XML.

5.6 The style attribute

The style attribute is only present in Stylable SVG. It is not included in the definition of Exchange SVG.

Attribute definitions:
style = style

This attribute specifies style information for the current element. The style attribute specifies
style information for a single element. The style sheet language of inline style rules is given by
the value of attribute contentStyleType on the 'svg' element. The syntax of style data depends on
the style sheet language.

Animatable: no.

This example setsfill and font size information for the text in a specific 'text' element:

<text style="font-size: 12pt; fill: fuchsia">lsn't styling wonderful ?</text>
In CSS, property declarations have the form "name : value" and are separated by a semi-colon.

The style attribute may be used to apply a particular style to an individual SVG element. If the style will
be reused for several elements, authors should use the 'styl€’ element to regroup that information. For

optimal flexibility, authors should define stylesin external style sheets.

5.7 Specifying the default style sheet language

The contentStyleType attribute on the 'svg’ element specifies the default style sheet language for the
given document fragment.

contentStyleType = "%ContentType;"

| dentifies the default style sheet language for the given document. This attribute sets the style
sheet language for the style attributes that are available on many elements. The value
%ContentType; specifies amediatype, per [REC2045]. The default value is "text/css'.
Animatable: no.

file:///d|/public/svgspec/samples/style.xml

5.8 Cascading and inheritance of properties

When styled with CSS, SV G conforms fully to the cascading rules defined in the CSS2 specification
[CSS2-CASCADE]. Property inheritance in SV G follows the inheritance rules for properties defined in

the CSS2 specification [CSS2-INHERIT].

The definition of each property indicates whether the property can inherit the value of its parent.

In SVG, asin CSS2, most elements inherit computed values [CSS2-COMPUTED)]. For cases where

something other than computed values are inherited, the property definition will describe the inheritance
rules. For specified values [CSS2-SPECIFIED] which are expressed in user units, in pixels (e.g.,
"20px") or in absolute values [CSS2-COMPUTED)], the computed value equal s the specified value. For
specified values which use certain relative units (i.e., em, ex and percentages), the computed value will
have the same units as the value to which it isrelative. Thus, if the parent element has a 'font-size' of
"10pt" and the current element has a ‘font-size' of "120%", then the computed value for 'font-size' on the
current element will be "12pt". In cases where the referenced value for relative unitsis not expressed in
any of the standard SV G units (i.e., CSS units or user units), such as when a percentage is used relative
to the current viewport or an object bounding box, then the computed value will be in user units.

5.9 The scope/range of styles

The following define the scope/range of style sheets:
Stand-alone SVG document

There is one parse tree. Style sheets defined anywhere within the SV G document (in style
elements or style attributes, or in external style sheets linked with the stylesheet processing
instruction) apply across the entire SV G document.

Stand-alone SVG document embedded in an HTML or XML document with the'img', 'object’
(HTML) or 'image’ (SVG) elements

There are two completely separate parse trees; one for the referencing document (perhaps
HTML/XHTML), and one for the SVG document. Style sheets defined anywhere within the
referencing document (in style elements or style attributes, or in external style sheets linked with
the stylesheet processing instruction) apply across the entire referencing document but have no
effect on the referenced SV G document. Style sheets defined anywhere within the referenced
SV G document (in style elements or style attributes, or in external style sheets linked with the
stylesheet processing instruction) apply across the entire SV G document, but do not affect the
referencing document (perhaps HTML/XHTML). To get the same styling across both
HTML/XHTML document and SV G document, link them both to the same stylesheet.

Stand-alone SVG content textually included in an XML document

Thereis asingle parse tree, using multiple namespaces; one or more subtrees arein the SVG
namespace. Style sheets defined anywhere within the XML document (in style elements or style
attributes, or in external style sheets linked with the stylesheet processing instruction) apply
across the entire document, including those parts of it in the SVG namespace. To get different
styling for the SV G part, use the style attribute, or put an ID on the 'svg' element and use
contextual CSS selectors, or use XSL selectors.

5.10 The 'display' property

‘display"

Value: inline | block | list-item |
run-in | compact | marker |
table | inline-table | table-row-group | table-header-group |
table-footer-group | table-row | table-column-group | table-column |
table-cell | table-caption | none | inherit

Initial: inline

Appliesto: al elements

Inherited: no

Percentages. N/A

Media: all

Animatable: yes

A value other than display: none indicates that the given element shall be rendered by the SVG user
agent.

5.11 Default style sheet for SVG

The user agent shall maintain a default style sheet [CSS2-CASCADE-RULES] for elementsin the SVG
namespace for visual media[CSS2-VISUAL]. The default style sheet below is expressed using CSS

syntax; however, user agents are required to support the behavior that corresponds to this default style
sheet even if CSS style sheets are not supported in the user agent:

svg, synbol, marker, pattern, view, use, inmage, nask { overflow hidden }

svg { width:attr(w dth); height:attr(height) }

Thefirst line of the above default style sheet will cause the initial clipping path to be established at the
bounds of the initial viewport. Furthermose, it will cause new clipping paths to be established at the
bounds of the elements listed below, all of which areb elements that establish a new viewport. (Refer the
description of SVG's use of the 'overflow' property for more information.)

The second line of the above default style sheet will cause the width and height attributes on the 'svg'
element to be used as the default values for the 'width' and 'height’ properties during [CSS2-LAY OUT].

5.12 Aural style sheets

For the purposes of aural media, SV G represents a stylable XML grammar. In user agents that support
aural style sheets, aural style properties [CSS2-AURAL] can be applied as defined in [CSS2].

Aural style properties can be applied to any SVG element that can contain character data content,
including 'desc', 'title, 'tspan'. 'tref' and 'textPath’. On user agents that support aural style sheets, the

following [CSS2] properties can be applied:

‘azimuth' [CSS2-azimuth]

‘cue [CSS2-cue

‘cue-after’ [CSS2-cue-after]
‘cue-before’ [CSS2-cue-before]
‘elevation’ [CSS2-€levation]
'pause [CSS2-pause
'pause-after’ [CSS2-pause-after]
'pause-before [CSS2-pause-before]
‘pitch’ [CSS2-pitch
‘pitch-range’ [CSS2-pitch-range]
'play-during' [CSS2-play-during]
'richness [CSS2-richness]
'speak’ [CSS2-speak
'speak-header’ [CSS2-speak-header]
'speak-numeral’ [CSS2-speak-numeral]
'speak-punctuation’ [CSS2-speak-punctuation]
'speech-rate’ [CSS2-speech-rate]
'stress [CSS2-stress
'voice-family' [CSS2-voice-family]
'volume' [CSS2-volume]

For user agents that support aural style sheets and also support [DOM 2], the user agent is required to
support the DOM interfaces defined in [DOM2-CS§] that correspond to aural properties
[CSS2-AURAL]. (See Relationship with DOM2 CSS object model.)

5.13 DOM interfaces

The following IDL definitions are defined for the various Stylable SV G-specific attribute definitionsin
the SYG DOM.

/1 For access to CSSStyl eDecl aration type.
#i f def STYLABLESVG
#include "css.idl"
#endi f STYLABLESVG

#i f def STYLABLESVG
/1 The definitions only apply to
/1 the DOM for Stylable SVG
t ypedef css::dom: CSSStyl eDecl arati on CSSStyl eDecl arati on;

#define STYLABLESVGStyl eAttribute \
readonly attribute CSSStyl eDecl aration style

#endi f STYLABLESVG

The following interfaces are defined below: SV GStyleElement, SVGCSSRule, CSSColorProfileRule.

Interface SVGStyleElement

The SV GStyleElement interface corresponds to the 'style' element.

| DL Definition

interface SVGStyl eEl enent : SVCEl enent, SVA.angSpace, SVGIests {
attribute DOVBtring type;
b

Attributes
DOM String type
Corresponds to attribute type on the given 'style' element.

Interface SVGCSSRule

SV G extends interface CSSRule with interface SV GCSSRule by adding an CSSColorProfileRule rule to
allow for specification of ICC-based color.

It islikely that this extension will become part of a future version of CSS and DOM.

| DL Definition

interface SVGCSSRul e : CSSRul e {
/1 Additional CSS Rul eType to support |CC color specifications
constant unsi gned short COLOR PROFILE RULE = 7;

b

Definition group Additional CSS RuleTypeto support ICC color specifications
Defined constants

COLOR_PROFILE_RULE Theruleisan @color-profile.

Interface CSSColorProfileRule

The CSSColorProfileRule interface represents an @color-profile rule in a CSS style sheet. An
@color-profile rule identifies al CC profile which can be referenced within a given document.

| DL Definition

interface CSSCol orProfil eRule : SVGCSSRul e {
/1 Rendering Intent Types
constant unsigned short RENDERI NG_| NTENT_UNKNOWN = 0;

constant unsi gned
constant unsigned
const ant unsi gned
constant unsi gned
constant unsigned

short
short
short
short
short

RENDERI NG _| NTENT_AUTO
RENDERI NG_| NTENT_PERCEPTUAL
RENDERI NG_| NTENT_RELATI VE_COLORI METRI C
RENDERI NG_| NTENT_SATURATI ON
RENDERI NG_| NTENT_ABSOLUTE_COLORI METRI C

1

2;
3
4:
5;

attribute DOVBtring src
attribute DOVBtring name;
attribute unsigned short renderinglntent;

Definition group Rendering Intent Types

Defined constants

RENDERING_INTENT_UNKNOWN Thetype is not one of

predefined types. It is
invalid to attempt to define a
new value of thistype or to
attempt to switch an existing

valueto thistype.
RENDERING_INTENT_AUTO Corresponds to a value of
auto.
RENDERING_INTENT_PERCEPTUAL Corresponds to a value of
perceptual .

RENDERING_INTENT_RELATIVE_COLORIMETRIC Corresponds to avalue of

relative-colorimetric.

RENDERING_INTENT_SATURATION Corresponds to a value of

saturation.

RENDERING_INTENT_ABSOLUTE_COLORIMETRIC Corresponds to a value of

Attributes
DOMString src

absol ute-colorimetric.

Corresponds to property src within an @color-profilerule.

DOM String name

Corresponds to property name within an @color-profilerule.
unsigned short renderingl ntent
The type of rendering intent, identified by one of the constants above.

previous next contents properties index

previous next contents properties index

6 SVG Document Structure

Contents

« 6.1 Defining an SV G document fragment: the 'svg' element

o 6.1.1 Overview
o0 6.1.2 The'svg' element

« 6.2 Grouping and Naming Collections of Drawing Elements: the 'g' element

0 6.2.1 Overview
0 6.2.2 The'g eement
o 6.3 References and the 'defs’ element

0 6.3.1 Overview
o 6.3.2 Specifying if external resources are required
o 6.3.3 URI reference attributes
0 6.3.4 The 'defs element
« 6.4 The'desc' and 'title' elements

e 6.5 The'symbol' element

e 6.6 The'use element

e 6.7 The'image element

« 6.8 Conditional processing

0 6.8.1 Conditional processing overview
0 6.8.2 The 'switch' element

0 6.8.3 The system-required attribute

0 6.8.4 The system-language attribute

« 6.9 Common attributes

o 6.9.1 Attributes common to al elements

o 6.9.2 The class attribute

0 6.9.3 The xml:lang and xml:space attributes
« 6.10 DOM interfaces

6.1 Defining an SVG document fragment: the 'svg' element

6.1.1 Overview

An SV G document fragment consists of any number of SV G elements contained within an 'svg' element.

An SV G document fragment can range from an empty fragment (i.e., no content inside of the 'svg' element), to avery simple SVG
document fragment containing asingle SVG graphics element such as a 'rect’, to a complex, deeply nested collection of container

elements and graphics elements.

An SVG document fragment can stand by itself as a self-contained file or resource, in which case the SV G document fragment is an

SV G document, or it can be embedded inline as afragment within a parent XML document.

The following example shows simple SV G content embedded as a fragment within a parent XML document. Note the use of XML
namespaces to indicate that the 'svg' and 'ellipse’ elements belong to the SV G namespace:

<?xm version="1.0" standal one="yes"?>
<parent xm ns="http://sonmepl ace. org"
xm ns: svg="http://ww. w3. or g/ 2000/ svg- 20000303- st yl abl e" >
<!-- parent stuff here -->
<svg: svg W dt h="5cm' hei ght ="8cnl' >
<svg:ellipse rx="200" ry="130" />
</ svg: svg>
<l-- ... -->
</ parent >

Download this example

This example shows a dlightly more complex (i.e., it contains multiple rectangles) stand-alone, self-contained SV G document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dth="4in" height="3in">
<desc>Four separate rectangles
</ desc>
<rect w dth="20" hei ght="60"/>
<rect w dth="30" height="70"/>
<rect w dth="40" hei ght="80"/>
<rect w dth="50" hei ght="90"/>
</ svg>

Download this example

'svg' elements can appear in the middle of SV G content. This is the mechanism by which SVG document fragments can be
embedded within other SV G document fragments.

Another use for 'svg' elements within the middle of SV G content is to establish a new viewport and ater the meaning of CSS unit
specifiers. See Establishing a new viewport and Redefining the meaning of CSS unit specifiers.

6.1.2 The 'svg' element

<IENTITY % svgExt "" >
<I ELEMENT svg (%lescTitl eDefs;, netadata?,
(path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| view switch|a| al t @ yphDef |
script| synbol | marker | cl i pPat h| nask]|
linearGadient|radial Gadient|pattern|filter|cursor]|font]
ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani nat eTr ansf orm
ust yl abl eSVG- Styl eEl enent ;

%ExchangeSVG Col or Prof i | eEl ement ; %ExchangeSVG Font FaceEl enent ;
%eExt; ¥%svgEXxt;)*) >

<! ATTLI ST svg
xm ns CDATA #FI XED " ¥%8VGNanespace; "
YstdAttrs;
% angSpaceAttrs;
class % asslList; #l MPLI ED
Y%gr aphi csEl ement Event s;
%docunent Event s;
YestAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
X Y%Coordi nate; #l MPLI ED
y %Coordi nate; #l MPLI ED
wi dth %.ength; #REQU RED
hei ght %.ength; #REQUI RED
vi ewBox /i ewBoxSpec; #l MPLI ED
preserveAspect Rati o %reserveAspect Rati oSpec; 'xM dYM d neet'
enabl eZoomAndPanControl s %Bool ean; "true"
cont ent Scri pt Type %Cont ent Type; "text/ecnascript”
content Styl eType %Content Type; "text/css"
Y5t yl abl eSVG Styl eAttribute;

%ExchangeSVG Cont ai ner Attrs;
%ExchangeSVG Fi | | StrokeAttrs;
%ExchangeSVG Gradi ent Attrs;

file:///d|/public/svgspec/samples/structure01.xml
file:///d|/public/svgspec/samples/4rects.xml

%ExchangeSVG G aphi csAttrs;
%ExchangeSVG Mar ker Attrs;
%ExchangeSVG Text Cont ai ner Attrs;
%ExchangeSVG Text El ement Attrs;
%ExchangeSVG Vi ewport Attrs; >

Attribute definitions:

xmins [:prefix] = "resource-name”

Standard XML attribute for identifying an XML namespace. Refer to the "Namespacesin XML" Recommendation

[XML-NS].
Animatable: no.

X = "<coordinate>"

(Has no meaning or effect on outermost 'svg' elements.) The x-coordinate of one corner of the rectangular region into which
an embedded 'svg' element is placed. The default x-coordinate is zero. See Coordinate Systems, Transformations and Units.

Animatable: yes.

y = "<coordinate>"

(Has no meaning or effect on outermost 'svg' elements.) The y-coordinate of one corner of the rectangular region into which
an embedded 'svg' element is placed. The default y-coordinate is zero. See Coordinate Systems, Transformations and Units.

Animatable: yes.

width = "<length>"

For outermost 'svg' elements, the intrinsic width of the SVG document fragment, with length being any valid expression for a
length in SVG. For embedded 'svg' elements, the width of the rectangular region into which the 'svg' element is placed.
Animatable: yes.

height = "<length>"

For outermost 'svg' elements, the intrinsic height of the SV G document fragment, with length being any valid expression for a
length in SVG. For embedded 'svg' elements, the height of the rectangular region into which the 'svg' element is placed.

Animatable: yes.

Attributes defined elsewhere:

%l angSpaceAttrs;, %ographi csElementEvents;, YodocumentEvents;, %testAttrs;, viewBox, preserveAspectRatio,
enableZoomAndPanControls, contentScriptType, contentStyleType, %StylableSV G-StyleAttribute;.

6.2 Grouping and Naming Collections of Drawing Elements: the
'g' element

6.2.1 Overview

The'g' element is the element for grouping and naming collections of drawing elements. If several drawing elements share similar
attributes, they can be collected together using a'g' element. For example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg W dt h="4i n" hei ght="3in">
<desc>Two groups, each of two rectangles
</ desc>
<g style="fill:red">
<rect x="100" y="100" wi dth="100" height="100" />
<rect x="300" y="100" wi dth="100" height="100" />
</ g>
<g style="fill:blue">
<rect x="100" y="300" wi dth="100" height="100" />
<rect x="300" y="300" width="100" height="100" />
</ g>
</ svg>

Download this example

file:///d|/public/svgspec/samples/group01.xml

Grouping constructs, when used in conjunction with the 'desc' and 'title' elements, provide information about document structure and
semantics. Documents that are rich in structure may be rendered graphically, as speech, or as braille. and thus promote accessibility.

A group of drawing elements, as well asindividual objects, can be given a name. Named groups are needed for several purposes
such as animation and re-usable objects.

The following example organizes the drawing elements into two groups and assigns a hame to each group:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg W dt h="4in" hei ght="3in">
<desc>Two naned groups
</ desc>
<g id="OBJECT1">
<rect x="100" y="100" wi dth="100" height="100" />
</ g>
<g id="OBJECT2">
<circle cx="150" cy="300" r="25" />
</ g>
</ svg>

Download this example

A 'g' element can contain other 'g' elements nested within it, to an arbitrary depth. Thus, the following isvalid SVG:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dth="4i n" hei ght="3in">
<desc>G oups can nest
</ desc>
<g>
<g>
<g>
</ g>
</ g>
</ g>
</ svg>

Download this example

Any drawing element that is not contained within a'g' is treated (at least conceptually) asif it werein its own group.

6.2.2 The 'g' element

<IENTITY %gExt "" >
<I ELEMENT g (%descTitl eDefs;,
(path|text|rect|circlelellipse|line|polyline|polygon|
use| i mage| svg| g| view switch|a| al t G yphDef |
script| synbol | mar ker | cl i pPat h| mask]|
linearGradi ent | radial Gadient|pattern|filter|cursor]|font]|
ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani nat eTr ansf orm
%St yl abl eSVG- St yl eEl enent ;
%ExchangeSVG- Col or Prof i | eEl ement ; %ExchangeSVG Font FaceEl enent ;
%eExt; YgExt;)*) >

< ATTLI ST g
YstdAttrs;
% angSpaceAttrs;
class % asslList; #l MPLI ED
transform %ransfornlist; # MPLI ED
Y%gr aphi csEl ement Event s;
YestAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
¥t yl abl eSVG Styl eAttribute;
%ExchangeSVG Cont ai ner Attrs;
%ExchangeSVG Fi | | StrokeAttrs;
%ExchangeSVG G adi ent Attrs;
%ExchangeSVG Graphi csAttrs;
%ExchangeSVG Mar ker Attrs;
%ExchangeSVG Text Cont ai ner Attrs;
%ExchangeSVG Text El ement Attrs; >

file:///d|/public/svgspec/samples/group02.xml
file:///d|/public/svgspec/samples/group03.xml

Attributes defined elsewhere:
Y%stdAttrs;, %langSpaceAttrs;, transform, %graphicsElementEvents;, %testAttrs;, %StylableSV G-StyleAttribute;.

6.3 References and the 'defs' element

6.3.1 Overview

SV G makes extensive use of URI references [URI] to other objects. For example, to fill arectangle with alinear gradient, you first
define a'linearGradient' element and giveit an ID, asin:

<linearGadient id="MyGadient"> ..</linearG adient>

Y ou then reference the linear gradient as the value of the 'fill' property for the rectangle, asin:

<rect style="fill:url (#WG adient)"/>
In SVG, the following facilities allow URI references:

« the'a element

« the'atGlyph' element

o the'animate' element

« the'animateColor' element

« the'animateMotion' element

« the'animateTransform' element

« the'clip-path' property

« the'cursor' element and ‘cursor' property

« the'felmage’ element

« the'fill' property

« the'filter' element and filter' property

« the'image element

o the'linearGradient' element

« the'marker','marker-start',' marker-mid' and 'marker-end properties

« the'mask’ property

« the'pattern' element

« the'radialGradient' element

« the'script' element

« the'src' descriptor on an @color-profile definition
« the'stroke' property

« the'textpath' element

« the'tref' element

« the'set' element

o the'use element

URI references are defined in either of the following forms:

<URI - r ef erence>
<URI - r ef erence>

= [<absoluteURI > | <relativeURI>] ["#" <elenmentlD>] -or-
= [<absoluteURl > | <relativeURI >] ["#xpointer(id(" <elenentiD> "))"]

where <element| D> isthe ID of the referenced el ement.

(Note that the two forms above (i.e., #<elementl D> and #xpointer(id(<elementI D>))) are formulated in syntaxes compatible with

"XML Pointer Language (XPointer)" [XPTR]. These two formulations of URI references are the only XPointer formulations that are
required in SVG 1.0 user agents.)

SV G supports two types of URI references:

« local URI references, where the URI references does not contain an <absoluteURI> or <relativeURI> and thus only contains
afragment identifier (i.e., #<elementID> or #xpointer(id<elementl D>))

« non-local URI references, where the URI references does contain an <absoluteURI> or <relativeURI>

The following rules apply to the processing of URI references:
« URI references to elements that do not exist shall be treated as invalid references.
« URI references to elements which are inappropriate targets for the given reference shall be treated asinvalid references. For
example, the 'clip-path’ property can only refer to <clipPath> elements. The property setting clip-path:url (#MyElement) is an
invalid referenceif the referenced element is not a <clipPath>.

It is recommended that, wherever possible, referenced elements be defined inside of a'defs element. Among the elements that are
always referenced: 'altGlyphDef', 'clipPath’, 'cursor’, filter', 'linearGradient’, 'marker’, 'mask’, 'pattern’, 'radial Gradient' and 'symbol'.
Defining these elementsinside of a'defs' element promotes understandability of the SV G content and thus promotes accessibility.

6.3.2 Specifying if external resources are required

Documents often reference and use the contents of other files (and other web resources) as part of their rendering. In some cases,
authors want to specify that particular resources are required for a document to be considered correct.

Attribute external ResourcesRequired is available on all elements which potentially can reference external resources. It specifies
whether referenced resources that are not part of the current document are reguired.

Attribute definition:
externalResourcesRequired = "false | true"

false
(The default value if no ancestor element has a value for this attribute.) Indicates that resources external to the current
document are optional. Document rendering can proceed even if external resources are unavailable to the current
element and its descendants.

true

Indicates that resources external to the current document are required. If an external resource is not available,
progressive rendering is suspended until that resource and all other required resources become available, have been
parsed and are ready to be rendered. If atimeout event occurs on arequired resource, then the document goesinto an
error state (see Error processing). The document remainsin an error state until all required resources become

available.

This attribute applies to all types of resource references, including style sheets and fonts specified by an @font-face specification. In
particular, if an element sets external ResourcesRequired="true", then all style sheets must be available since any style sheet might
affect the rendering of that element.

Attribute external ResourcesRequired is inheritable; thus,if set on a container element, its value will apply to the elements within the
container which don't specify avalue for this attribute.

For external ResourcesRequired: Animatable: yes.

6.3.3 URI reference attributes

<IENTITY % xl i nkRef Attrs
"xm ns: xl i nk CDATA #FI XED ' htt p://ww. w3. or g/ 2000/ xI i nk/ namespace/"'
xlink:type (sinple|extended|locator|arc) 'sinple'
xlink:role CDATA #l MPLI ED
xlink:title CDATA #l MPLI ED
xl i nk: show (new enbed| repl ace) 'enbed'
xlink:actuate (onRequest|onLoad) 'onLoad " >

xlink: href CDATA #REQUI RED

xmlns[:prefix] = "resource-name”

Standard XML attribute for identifying an XML namespace. This attribute makes the XLink [XLink] namespace available to
the current element. Refer to the "Namespacesin XML" Recommendation [XML-NS].
Animatable: no.
xlink:type = 'simple’
Identifies the type of XLink being used. For hyperlinksin SVG, only simple links are available. Refer to the "XML Linking
Language (XLink)" [XLink].
Animatable: no.
xlink:role = '<string>'
A generic string used to describe the function of the link's content. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.
xlink:title = '<string>'
Human-readabl e text describing the link. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.
xlink:show = 'new | replace | embed'

Indicates whether, upon activation of the link, a new view is created for the target of the link, whether the contents of the
view are replaced by the target of the link, or whether the referenced resource is incorporated into the current document.
Refer to the "XML Linking Language (XLink)" [XLink].

Animatable: no.

xlink:actuate = ‘onRequest | onL oad'

Indicates whether the contents of the referenced object are incorporated upon user action or automatically (i.e., without user
action). Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:href ="<uri>"

The location of the referenced object, expressed as a URI reference. Most elements in SV G which has an xlink:href attribute
will describe the particular usage rules relevant to that element. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: yes.

6.3.4 The 'defs' element

The 'defs element is a container element for referenced elements. For understandability and accessibility reasons, it is recommended
that, whenever possible, referenced elements be defined inside of a'defs.

The content model for 'defs' is the same as for the 'g' element; thus, any element that can be achild of a'g' can also be achild of a
'defs, and vice versa.

When the current SV G document fragment is rendered as SV G on visual media, graphics elements that are descendants of a'defs' are
not drawn; thus, in this case, the 'display’ property does not apply to 'defs (i.e., thereisan implicit 'display:none’).

<IENTITY % defsExt "" >

<! ELEMENT defs (
path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| view| swi tch| al al t d yphDef |
script| synbol | marker | cl i pPat h| mask|
linear Gradi ent|radial Gadient|pattern|filter|cursor|font]
ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf orm
ust yl abl eSVG- St yl eEl enent ;

%ExchangeSVG- Col or Prof i | eEl ement ; %&ExchangeSVG Font FaceEl enent ;
% eExt ; Ydef sExt;)* >

<! ATTLI ST defs
YstdAttrs;
% angSpaceAttrs;
class %C assList; # MPLI ED
transform %ransforniist; #l MPLIED
% estAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
¥t yl abl eSVG Styl eAttribute;

%ExchangeSVG Cont ai ner Attrs;
%ExchangeSVG Fi | | StrokeAttrs;
%ExchangeSVG Gradi ent Attrs;

%ExchangeSVG G aphi csAttrs;
%ExchangeSVG Mar ker Attrs;
%ExchangeSVG Text Cont ai ner Attrs;
%ExchangeSVG Text El enent Attrs; >

Attributes defined elsewhere:
Y%ostdAttrs;, YolangSpaceAttrs;, %StylableSV G-StyleAttribute;.

To provide some SV G user agents with an opportunity to implement efficient implementations in streaming environments, creators
of SV G content are encouraged to place all elements which are targets of local URI references within a'defs element whichisa
direct child of one of the ancestors of the referencing element. For example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="4in" hei ght="3in">
<desc>Local URlI references within ancestor's 'defs' elenent.</desc>
<def s>
<linear Gradient id="G adi ent0l">
<stop offset="30% style="col or: #39F"/>
</li near G adi ent >
</ def s>
<rect x="0% y="0% w dth="100% hei ght="100%
style="fill:url (#G adient01)" />
</ svg>

Download this example

In the document above, the linear gradient is defined within a'defs element which is the direct child of the 'svg' element, whichin
turn is an ancestor of the 'rect' element which references the linear gradient. Thus, the above document conforms to the guideline.

6.4 The 'desc' and 'title' elements

Each container element or graphics element in an SV G drawing can supply a'desc' and/or a'title' description string where the
description is text-only. When the current SV G document fragment is rendered as SV G on visual media, ‘desc’ and 'title' elements are
not rendered as part of the graphics. User agents may, however, for example, display the 'title' element as atooltip, as the pointing
device moves over particular elements. Alternate presentations are possible, both visual and aural, which display the 'desc’ and 'title'
elements but do not display 'path’ elements or other graphics elements. Thisisreadilly achieved by using a different (perhaps user)
stylesheet. For deep hierarchies, and for following 'use’ element references, it is sometimes desirable to alow the user to control how

deep they drill down into descriptive text.

Thefollowing is an example. In typical operation, the SV G user agent would not render the 'desc' and 'title' elements but would
render the remaining contents of the'g’ element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg SYSTEM "http://ww. w3. or g/ TR/ 2000/ 03/ \D- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dth="4in" height="3in">
<g>
<title>
Conpany sal es by region
</[title>
<desc>
This is a bar chart which shows
conpany sal es by region.
</ desc>
<!-- Bar chart defined as vector data -->
</ g>
</ svg>

Download this example

Description and title elements can contain marked-up text from other namespaces. Here is an example:

<?xm version="1.0" standal one="yes"?>
<svg w dt h="4in" hei ght="3in"
xm ns="http://ww. w3. or g/ 2000/ svg- 20000303- st yl abl e" >
<desc xnl ns: nydoc="http://foo. org/ nydoc">
<nmydoc:title>This is an exanple SVG file</nydoc:title>
<nydoc: par a>The gl obal description uses markup fromthe
<nydoc: enph>nydoc</ nydoc: enph> nanespace. </ nydoc: par a>
</ desc>
<g>

file:///d|/public/svgspec/samples/defs_ancestor.xml
file:///d|/public/svgspec/samples/desc.xml

<!-- the picture goes here -->
</ g>
</ svg>

Download this example

Authors should always provide a 'title' child element to the outermost 'svg' element within a stand-alone SV G document. The 'titl€
child element to an 'svg' element serves the purposes of identifying the content of the given SVG document fragment. Since users
often consult documents out of context, authors should provide context-rich titles. Thus, instead of atitle such as"Introduction”,
which doesn’'t provide much contextual background, authors should supply atitle such as "Introduction to Medieval Bee-Keeping"
instead. For reasons of accessibility, user agents should always make the content of the 'title' child element to the outermost 'svg'

element available to users. The mechanism for doing so depends on the user agent (e.g., as a caption, spoken).

6.5 The 'symbol' element

The 'symbol’ element is used to define graphical template objects which can be instantiated by a'use’ element.

The use of 'symbol' elements for graphics that are used multiple times in the same document adds structure and semantics.
Documents that are rich in structure may be rendered graphically, as speech, or as braille. and thus promote accessibility.

The key distinctions between a'symbol' and a'g’ are:

« A 'symbol' element itself is not rendered. Only instances of a'symbol' element (i.e., areference to a'symbol’ by a'use’
element) are rendered.

« A 'symbol' element has attributes viewBox and preserveAspectRatio which alow a'symbol' to scale-to-fit within a
rectangular viewport defined by the referencing 'use’ element.

Closely related to the 'symbol’ element are the 'marker' and 'pattern’ elements.

<IENTITY % synbol Ext "" >
<! ELEMENT synbol (%lescTitleDefs;,
(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| switch|a
% eExt ; %synbol Ext;)*) >

<! ATTLI ST synbol
YstdAttrs;

% angSpaceAttrs;

class % assList; #l MPLI ED

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
vi ewBox %/ ewBoxSpec; # MPLI ED
preserveAspect Rati o %reserveAspect Rati oSpec; 'xM dYM d neet’
Y5t yl abl eSVG Styl eAttribute;

%ExchangeSVG Cont ai ner Attrs;

%ExchangeSVG Fi | | StrokeAttrs;

%ExchangeSVG Gradi ent Attrs;

%ExchangeSVG Graphi csAttrs;

%ExchangeSVG Mar ker Attrs;

%ExchangeSVG Text Cont ai ner Attrs;
%ExchangeSVG Text El ement Attrs; >

Attributes defined elsewhere:
YostdAttrs;, YolangSpaceAttrs;, viewBox, preserveAspectRatio, %StylableSV G-Styl eAttribute;.

6.6 The 'use' element

Any 'svg’, 'symbol', 'g’, graphics element or other 'use' is potentially atemplate object that can be re-used (i.e., "instanced") in the

SVG document viaa'use' element. The 'use’ element references another element and indicates that the graphical contents of that
element isincluded/drawn at that given point in the document.

Unlike 'image’, the 'use’ element cannot reference entire files.

file:///d|/public/svgspec/samples/richdesc.xml

The'use' element has optional attributes x, y, width and height which are used to map the graphical contents of the referenced
element onto a rectangular region within the current coordinate system.

The effect of a'use’ element is asif the contents of the referenced element, along with any property values resulting from the CSS
cascade [CSS2-CA SCADE] on the referenced element and its contents, were deeply cloned into a separate non-exposed DOM tree
which had the 'use’ element asits parent and all of the 'use’ element's ancestors as its higher-level ancestors. Because the cloned
DOM tree is non-exposed, the SVG Document Object Model (DOM) only contains the 'use’ element and its attributes. The SVG
DOM does not show the referenced element's contents as children of 'use’ element.

Property inheritance, however, works as if the referenced element had been textually included as a deeply cloned child of the 'use'
element. The referenced element inherits properties from the 'use’ element and the 'use' element's ancestors. An instance of a
referenced element does not inherit properties from its original parents.

A 'use’ element has the same visua effect asif the 'use’ element were replaced by the following generated content:
« The generated content consists of aninitia 'svg' element with a copy (deep clone) of the referenced resource within the 'svg'

« Theinitia 'svg' element carries along with it the "cascaded" property values on the 'use’ element which result from the CSS
cascade [CSS2-CASCADE]. Additionally, the copy (deep clone) of the referenced resource carries along with it the

"cascaded" property values resulting from the CSS cascade on the original/referenced elements. Thus, the result of various
CSS sdlectors in combination with the class and style attributes are, in effect, replaced by the functional equivalent of astyle

attribute in the generated content which conveys the "cascaded” property values.

« Except for the href/XLink attributes, which are stripped, all other attributes that had been on the ‘use’ element are transferred
totheinitial 'svg' element.

« If thex, y, width and height attributes are not specified on the 'use, the default values for x, y, width and height are
transferred to the 'svg'.

« If the'use has atransform attribute, then the user agent applies the transform attribute on the 'svg' asif a'g' element with the
given transform attribute encapsulated the initial 'svg' element. This generated 'g' element isignored/bypassed when applying
inheritance rules; thus, theinitial 'svg' in the generated content inherits properties from the parent of the 'use', not from the
generated 'g’ element. (This special caseruleis necessary for proper handling the rare case where a'use’ has a 'transform'
attribute and the cascade results in a non-inheritable property having a specified value of ‘inherit'. See [CSS2-INHERIT].)

« If thereferenced element isa'symboal’, then the effect is asif the 'symbol’ were renamed to an 'svg' and attributes x, y, width
and height were set to 0%, 0%, 100% and 100%, respectively.

Example Use01 below hasasimple 'use' on a'rect'.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="10cnt hei ght ="3cni' >

<desc>Exanpl e UseOl1 - Sinple case of 'use' on a 'rect'</desc>

<def s>
<rect id="MyRect" width="6cni' height="1cn'/>
</ def s>
<use x="2cn" y="1cn' xlink: href="#WRect" />
</ svg>

Example Use01
View this example as SV G (SV G-enabled browsers only)

The visua effect would be equivalent to the following document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="10cnt hei ght ="3cni'>

<desc>Exanpl e UseOl- GeneratedContent - Sinple case of 'use' on a 'rect'</desc>

file:///d|/public/svgspec/images/struct/Use01.svg

<l-- 'defs' section left out -->

<l-- Start of generated content. Replaces 'use' -->

<svg x="2cnf y="1lcnt w dth="100% hei ght="100% >
<rect wi dth="6cnt hei ght="1cni'/>

</ svg>

<!-- End of generated content -->

</ svg>

View this example as SV G (SV G-enabled browsers only)

Example Use02 below hasa'use' on a'symbol'.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg W dt h="10cn' hei ght ="3cni{'>

<desc>Exanpl e Use02 - 'use' on a 'synbol'</desc>
<def s>
<synbol id="MSynbol" viewBox="0 0 20 20">
<desc>MySynbol - four rectangles in a grid</desc>

<rect x="1" y="1" w dth="8" hei ght="8"/>
<rect x="11" y="1" w dth="8" height="8"/>
<rect x="1" y="11" w dth="8" hei ght="8"/>
<rect x="11" y="11" w dth="8" hei ght="8"/>
</ synbol >
</ def s>
<use x="4.5cn y="1lcnl' width="1cnt height="1cnt
xli nk: href ="#M/Synbol " />
</ svg>

Example Use02

View this example as SVG (SV G-enabled browsers only)

The visual effect would be equivalent to the following document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="10cm' hei ght ="3cni' >

<desc>Exanpl e Use02- Gener at edContent - 'use' on a 'synbol'</desc>
<l-- 'defs' section left out -->
<l-- Start of generated content. Replaces 'use' -->
<svg x="4.5cn y="1lcml' w dth="1cn' height="1cm' >
<l-- Start of referenced 'synbol'. 'synbol' replaced by 'svg',

with x,y,w dth, hei ght =0% 0% 100% 100% - - >
<svg x="0% y="0% w dth="100% hei ght="100%
vi ewBox="0 0 20 20">
<rect x="1" y="1" w dth="8" height="8"/>
<rect x="11" y="1" w dth="8" hei ght="8"/>
<rect x="1" y="11" w dth="8" hei ght="8"/>
<rect x="11" y="11" w dth="8" height="8"/>
</ svg>
<l-- End of referenced synbol -->
</ svg>
<I-- End of generated content -->

</ svg>

View this example as SV G (SV G-enabled browsers only)

Example Use03 illustrates what happens when a'use’ has a transform attribute.

file:///d|/public/svgspec/images/struct/Use01-GeneratedContent.svg
file:///d|/public/svgspec/images/struct/Use02.svg
file:///d|/public/svgspec/images/struct/Use02-GeneratedContent.svg

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="10cnt hei ght="3cni'>

<desc>Exanpl e Use03 - 'use' with a 'transformi attribute</desc>
<def s>

<rect id="MyRect" x="0" y="0" w dth="6cn height="1cni'/>
</ def s>

<use xlink: href="#WRect"
transforne"transl ate(2cm.25cm rotate(10)" />
</ svg>

Example Use03

View this example as SV G (SV G-enabled browsers only)

The visua effect would be equivalent to the following document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="10cnt hei ght="3cni'>

<desc>Exanpl e Use03- GeneratedContent - 'use’ with a 'transform attribute</desc>
<l-- 'defs' section left out -->
<I-- Start of generated content. Replaces 'use' -->

<g transforne"transl ate(2cm . 25cm rotate(10)">
<svg x="0% y="0% w dth="100% hei ght="100% >
<rect x="0" y="0" w dth="6cnt hei ght="1cni'/>
</ svg>
</ g>
<l-- End of generated content -->

</ svg>

View this example as SV G (SV G-enabled browsers only)

Example Use04 illustrates a 'use’ element with various methods of applying CSS styling.

<?xm version="1.0" standal one="no"?>
<I DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG 20000303 Styl abl e// EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dth="12cn hei ght="3cni' vi ewBox="0 0 1200 300" >
<desc>Exanpl e Use04 - 'use' with CSS styling</desc>
<defs style="/* rule 9 */ stroke-miterlinmt: 10" >
<path id="MPath" d="MB00 50 L900 50 L900 250 L300 250"
cl ass="MPat hCl ass"
style="/* rule 10 */ stroke-dasharray: 300 100" />

</ def s>
<style type="text/css">
<! [CDATAl
/* rule 1 */ #WUse { fill: blue }
/* rule 2 */ #MWPath { stroke: red }
/* rule 3 */ use { fill-opacity: .5}
/* rule 4 */ path{ stroke-opacity: .5}
/* rule 5 */ .MUsed ass { stroke-linecap: round }
/* rule 6 */ .MPathd ass { stroke-linejoin: bevel }
/* rule 7 */ use > path{ shape-rendering: optim zeQuality }
/* rule 8 */ svg > path{ visibility: hidden }
11>
</styl e>

<g style="/* rule 11 */ stroke-w dth: 40">
<use id="MyUse" xlink:href="#MPath"
cl ass="MyUsed ass"
style="/* rule 12 */ stroke-dashoffset:50" />
</ g>
</ svg>

file:///d|/public/svgspec/images/struct/Use03.svg
file:///d|/public/svgspec/images/struct/Use03-GeneratedContent.svg

Example Use04

View this example as SV G (SV G-enabled browsers only)

The visua effect would be equivaent to the following document. Observe that some of the style rules above apply to the generated
content (i.e., rules 1-6, 10-12), whereas others do not (i.e., rules 7-9). The rules which do not affect the generated content are:

« Rules7 and 8: CSS selectors only apply to the formal document tree, not on the generated tree; thus, these selectors will not
yield amatch.

« Rule9: The generated tree only inherits from the ancestors of the 'use’ element and does not inherit from the ancestors of the
referenced element; thus, this rule does not affect the generated content.

In the generated content below, the selectors that yield a match have been transferred into inline 'style' attributes for illustrative
purposes.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="12cm' hei ght ="3cn' vi ewBox="0 0 1200 300" >

<desc>Exanpl e Use04- GeneratedContent - 'use' with a 'transform attribute</desc>

<l-- "style' and 'defs' sections left out -->

<g style="/* rule 11 */ stroke-wi dth: 40">

<l-- Start of generated content. Replaces 'use' -->
<svg x="0% y="0% w dth="100% hei ght="100%
style="/* rule 1 */ fill:blue;

/* rule 3 */ fill-opacity:.5;
/* rule 5 */ stroke-linecap:round;
/* rule 12 */ stroke-dashoffset:50" >
<path d="M300 50 L900 50 L900 250 L300 250"
style="/* rule 2 */ stroke:red;
/* rule 4 */ stroke-opacity:.5;
/* rule 6 */ stroke-linejoin: bevel;
/* rule 10 */ stroke-dasharray: 300 100" />

</ svg>
<I-- End of generated content -->
</ g>
</ svg>

View this example as SV G (SV G-enabled browsers only)

When a'use' references another element which is another 'use’ or whose content contains a'use' element, then the deep cloning
approach described aboveis recursive.

file:///d|/public/svgspec/images/struct/Use04.svg
file:///d|/public/svgspec/images/struct/Use04-GeneratedContent.svg

<IENTITY % useExt "" >
<! ELEMENT use (%descTitle;, (animate|set| ani nmat eMbti on| ani mat eCol or | ani mat eTr ansf orm

%geExt ; YuseExt;)*) >

<! ATTLI ST use
YstdAttrs;
% angSpaceAttrs;
class % assList; #l MPLI ED
transform %ransforniist; #l MPLIED
Ygr aphi csEl ement Event s;
YiestAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
X %Coor di nate; #l MPLI ED
y %Coor di nate; #l MPLI ED
wi dth %.ength; #l MPLI ED
hei ght %.ength; #l MPLI ED
%l i nkRef Attrs;
xlink: href 9%JRI; #REQUI RED
¥t yl abl eSVG Styl eAttribute;
%ExchangeSVG Cont ai ner Attrs;
%ExchangeSVG Fi | | StrokeAttrs;
%ExchangeSVG Gradi ent Attrs;
%ExchangeSVG G aphi csAttrs;
%ExchangeSVG Marker Attrs;
%ExchangeSVG Text Cont ai ner Attrs;
%ExchangeSVG Text El enent Attrs;
%ExchangeSVG Vi ewport Attrs; >

Attribute definitions:
X = "<coordinate>"

The x coordinate of one corner of the rectangular region into which the referenced element is placed. The default x
coordinate is"0". See Coordinate Systems, Transformations and Units.

Animatable: yes.

y = "<coordinate>"

They coordinate of one corner of the rectangular region into which the referenced element is placed. The default y
coordinateis"0". See Coordinate Systems, Transformations and Units.

Animatable: yes.

width = "<length>"

The width of the rectangular region into which the referenced element is placed. The default valueis "100%".
Animatable: yes.

height = "<length>"

The height of the rectangular region into which the referenced element is placed. The default valueis "100%".
Animatable: yes.

xlink:href ="<uri>"

A URI reference to an element/fragment within an SVG document.
Animatable: yes.

Attributes defined elsewhere:

YostdAttrs;, YolangSpaceAttrs;, transform, %graphicsElementEvents;, %otestAttrs;, YoxlinkRefAttrs;,
%StylableSV G-StyleAttribute;.

6.7 The 'image' element

The 'image’ element indicates that the contents of a complete file are to be rendered into a given rectangle within the current user
coordinate system. The 'image’ element can refer to raster image files such as PNG or JPEG or to files with MIME type of
"image/svg". Conforming SV G viewers need to support at least PNG, JPEG and SV G format files.

The resource referenced by the 'image’ element represents a separate document which generates its own parse tree and document
object model (if the resourceis XML). Thus, thereis no inheritance of propertiesinto the image.

Unlike 'use, the 'image’ element cannot reference elements within an SVG file.

<IENTITY % i nageExt "" >
<! ELEMENT inmage (%descTitle;, (aninate|set|animateMtion|ani mateCol or| ani mat eTr ansf orm
%geExt ; % mageExt;)*) >

<! ATTLI ST i nage
YstdAttrs;
% angSpaceAttrs;
class %l assList; #l MPLI ED
transform %ransforniist; # MPLIED
Ygr aphi csEl ement Event s;
YtestAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
X %Coordi nate; #l MPLI ED
y %Coordi nate; #l MPLI ED
wi dth %.ength; #REQU RED
hei ght %.ength; #REQU RED
%l i nkRef Attrs;
xlink:href %JRI; #REQU RED
%5t yl abl eSVG Styl eAttri bute;
%ExchangeSVG Cont ai ner Attrs;
%ExchangeSVG Fi | | StrokeAttrs;
%ExchangeSVG G adi ent Attrs;
%ExchangeSVG G aphi csAttrs;
%ExchangeSVG Mar ker Attrs;
%ExchangeSVG Text Cont ai ner Attrs;
%ExchangeSVG Text El enent Attrs;
%ExchangeSVG Vi ewport Attrs; >

Attribute definitions:
X = "<coordinate>"

The x coordinate of one corner of the rectangular region into which the referenced document is placed. The default x
coordinate is"0". See Coordinate Systems, Transformations and Units.

Animatable: yes.

y = "<coordinate>"

They coordinate of one corner of the rectangular region into which the referenced document is placed. The default y
coordinate is"0". See Coordinate Systems, Transformations and Units.

Animatable: yes.

width = "<length>"

The width of the rectangular region into which the referenced document is placed. The default value is 100%.
Animatable: yes.

height = "<length>"

The height of the rectangular region into which the referenced document is placed. The default value is"100%".
Animatable: yes.

xlink:href = "<uri>"

A URI reference.
Animatable: yes.

Attributes defined elsewhere:

YostdAtirs;, YolangSpaceAttrs;, transform, %graphi csElementEvents;, %testAttrs;, YoxlinkRefAttrs;,
%StylableSV G-StyleAttribute;.

A valid example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ /EN'

"http://ww.w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="4in" hei ght="3in">

<desc>Thi s graphic links to an external inmage

</ desc>

<i mage x="200" y="200" wi dth="100px" hei ght="100px"

xl i nk: href =" nyi mage. png" >
<title>My imge</title>

</ i mage>
</ svg>

Download this example

A well-formed example:

<?xm version="1.0" standal one="yes"?>
<svg wi dt h="4in" hei ght="3in"
xm ns="http://ww. w3. or g/ 2000/ svg- 20000303- st yl abl e' >
<desc>This links to an external inage
</ desc>
<i mage x="200" y="200" wi dth="100px" hei ght="100px"
xlink:type="si npl e" xlink:show="enbed" xlink:actuate="onLoad"
x| i nk: hr ef =" nyi nage. png" >
<title>My imge</title>
</ i mage>
</ svg>

Download this example

6.8 Conditional processing

6.8.1 Conditional processing overview

SV G contains a'switch' element along with attributes system-required and system-language to provide an ability to specify alternate

viewing depending on the capabilities of a given user agent or the user's language. These features operate with the same semantics as
the corresponding features within the SMIL 1.0 Recommendation [SMIL1].

<IENTITY %testAttrs
"systemrequi red NMIOKEN #| MPLI ED
system | anguage CDATA #| MPLI ED' >

Attributes system-required and system-language act as tests and return either true or false results. The 'switch' renders the first of its
children for which both attributes test true.

6.8.2 The 'switch' element

The 'switch' e ement eval uates the system-required and system-language attributes on its direct child elementsin order, and then

processes and renders the first child for which these two attributes evaluate to true. All others will be bypassed and therefore not
rendered. If the child element is a container element such asa'd’, then the entire subtree is either processed/rendered or bypassed/not
rendered.

<IENTITY % swi tchExt "" >
<I ELEMENT switch (%descTitl eDefs;,
(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| swi tch| a| forei gntoj ect |
ani nat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf orm
% eExt; ¥%sw tchExt;)*) >
<I ATTLI ST swi tch
YstdAttrs;
% angSpaceAttrs;
class %l assList; #l MPLI ED
transform %ransforniist; #l MPLIED
Y@r aphi csEl ement Event s;
Y%estAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
%8t yl abl eSVG Styl eAttri bute;
%ExchangeSVG Cont ai ner Attrs;
%ExchangeSVG Fi | | StrokeAttrs;

file:///d|/public/svgspec/samples/image-valid.xml
file:///d|/public/svgspec/samples/image-wf.xml

%ExchangeSVG G adi ent Attrs;
%ExchangeSVG G aphi csAttrs;
%ExchangeSVG Mar ker Attrs;
%ExchangeSVG Text Cont ai ner Attrs;
%ExchangeSVG Text El ement Attrs; >

Attributes defined elsewhere:
%ostdAttrs;, YolangSpaceAttrs;, transform, %graphicsElementEvents;, %testAttrs;, %StylableSV G-StyleAttribute;.

For more information and an example, see Embedding foreign object types.

6.8.3 The system-required attribute

Definition of system-required:

system-required = list-of-features
The valueis acomma-separated list of feature strings. Determines whether al of the named features are supported by the
user agent. If one of the given features is supported, then the current element and its children are processed; otherwise, the

current element and its children are skipped and thus will not be rendered and cannot be referenced by another element.
Animatable: no.

All feature strings referring to language capabilities begin with " org.w3c.svg" . All feature strings referring to SVG DOM
capabilities begin with " org.w3c.dom.svg" .

The following are the feature strings for the system-required attribute. These same feature strings apply to the hasFeature method call
that is part of the SVG DOM's support for the DOM Implementation interface defined in [DOM2-CORE] (see Feature strings for the

hasFeatur e method call).
« Thefeature string " org.w3c.svg" indicates that the user agent supports at least one of the following (all of which are

described subsequently): " org.w3c.svg.lang", " org.w3c.svg.dynamic", " org.w3c.svg.static" or " org.w3c.dom.svg" .
(Because the feature string " org.w3c.svg" can be ambiguous in some circumstances, it is recommended that more specific

feature strings be used.)

« Thefeature string " org.w3c.svg.lang" indicates that the user agent can parse and process al of the language features defined
in this specification. This value indicates that there is no language feature defined in this specification which will cause the
user agent to fail in its processing.

« Thefeature string " org.w3c.svg.static" indicates the availability of all of the language capabililities defined in:
o Basic Data Types and Interfaces
o SVG Document Structure

o Styling

o Coordinate Systems, Transformations and Units
o Paths

o Basic Shapes

o Text

o Painting: Filling, Stroking and Marker Symbols

o Color
o Gradients and Patterns

o Clipping, Masking and Compositing
o Filter Effects

o Fonts
o The'switch' element
o The system-required attribute

o The system-language attribute

For SVG viewers, " org.w3c.svg.static* indicates that the viewer can process and render successfully al of the language
features listed above.

« Thefeature string " org.w3c.dom.svg.static" indicates the availability of all of the DOM interfaces and methods that

correspond to the language features for " org.w3c.svg.static" .

« Thefeature string " org.w3c.svg.animation” includes al of the language capabilities defined for " or g.w3c.svg.static” plus
the availability of al of the language capabililities defined in Animation. For SV G viewers running on media capable of
rendering time-based material, such as displays, " org.w3c.svg.animation" indicates that the viewer can process and render
successfully all of the corresponding language features.

« Thefeature string " or g.w3c.dom.svg.animation" corresponds to the availability of DOM interfaces and methods that
correspond to the language features for " org.w3c.svg.animation” .

« Thefeature string " org.w3c.svg.dynamic" includes al of the language capabilities defined for " or g.w3c.svg.animation”
plus the availability of all of the language capabililities and DOM interfaces defined in Relationship with DOM?2 events,
Linking and Interactivity and Scripting. For SV G viewers running on media capable of rendering time-based material, such
as displays, " org.w3c.svg.dynamic" indicates that the viewer can process and render successfully all of the corresponding
language features.

« Thefeature string " org.w3c.dom.svg.dynamic" corresponds to the availability of DOM interfaces and methods that
correspond to the language features for " or g.w3c.svg.dynamic" .

» Thefeaturestring " org.w3c.svg.all" corresponds to the availability of all of the language capabilities defined in this
specification.

« Thefeature string " org.w3c.dom.svg.all" corresponds to the availability of all of the DOM interfaces defined in this
specification.

If the attribute is not present, then itsimplicit return value is "true”. If anull string or empty string value is given to attribute
system-required, the attribute returns "false".

system-required is often used in conjunction with the 'switch' element. If the system-required is used in other situations, then it
represented a simple switch on the given element whether to render the element or not.

6.8.4 The system-language attribute

The attribute value is a comma-separated list of language names as defined in [REC1766].

Evaluatesto "true" if one of the languages indicated by user preferences exactly equals one of the languages given in the vaue of
this parameter, or if one of the languages indicated by user preferences exactly equals a prefix of one of the languages given in the

value of this parameter such that the first tag character following the prefix is"-". Evaluates to "false" otherwise.

Further description of the system-language attribute can be found at [SMIL10-SYSLANG].

If the attribute is not present, then itsimplicit return value is "true”. If anull string or empty string value is given to attribute
system-required, the attribute returns "false".

6.9 Common attributes

6.9.1 Attributes common to all elements
Theid attribute is available on al SVG e ements:

<IENTITY % stdAttrs
"id I D # MPLIED" >

Attribute definitions:
id = "name"

Standard XML attribute for assigning a unique name to an element. Refer to the the "Extensible Markup Language (XML)
1.0" Recommendation [XML10].
Animatable: no.

6.9.2 The class attribute

Attribute definitions:
class = list

This attribute assigns a class name or set of class names to an element. Any number of elements may be assigned the same
class name or names. Multiple class names must be separated by white space characters.
Animatable: yes.

The class attribute assigns one or more class names to an element. The element may be said to belong to these classes. A class name
may be shared by several element instances. The class attribute has severa roles:

« Asastyle sheet selector (when an author wishes to assign style information to a set of elements).
« For general purpose processing by user agents.

In the following example, the 'text’ element is used in conjunction with the class attributes to markup document messages. M essages
appear in both English and French versions.

<!-- English nessages -->

<text class="info" |ang="en">Variabl e declared tw ce</text>

<text class="warning" |ang="en">Undecl ared vari abl e</text>

<text class="error" |ang="en">Bad syntax for variable name</text>

<l-- French nessages -->

<text class="info" lang="fr">Variabl e décl arée deux fois</text>
<text class="warning" |ang="fr">Variable indéfinie</text>

<text class="error" lang="fr">Erreur de syntaxe pour variabl e</text>

Inan SV G user agent that supports CSS styling, the following CSS style rules would tell visual user agents to display informational
messages in green, warning messages in yellow, and error messagesin red:

text.info { color: green }
text.warning { color: yellow}
text.error { color: red }

6.9.3 The xml:lang and xml:space attributes

Elements that might contain character data content have attributes xml:lang and xml:space:

<IENTITY % | angSpaceAttrs
"xm :1ang NMIOKEN #| MPLI ED

xm : space (defaul t|preserve) # MPLIED" >

Attribute definitions:

xml:lang = "languagel D"
Standard XML attribute to specify the language (e.g., English) used in the contents and attribute values of particular
elements. Refer to the "Extensible Markup Language (XML) 1.0" Recommendation [XML10].
Animatable: no.

xml:space = "{ default | preserve}”

Standard XML attribute to specify whether white spaceis preserved in character data. The only possible values are default
and preserve. Refer to the "Extensible Markup Language (XML) 1.0" Recommendation [XML 10] and to the discussion
white space handling in SVG.

Animatable: no.

6.10 DOM interfaces

The following interfaces are defined below: SV GDocument, SV GElement, SV GSV GElement, SV GGElement, SV GDefsElement,
SV GDescElement, SV GTitleElement, SV GUseElement, SV GlmageElement, SV GSymbol Element, SV GSwitchElement,
SV GLangSpace, SVGTests, SVGURIReference, GetSV GDocument.

Interface SVGDocument

When an 'svg' element is embedded inline as a component of a document from another namespace, such as when an 'svg' element is
embedded inline within an XHTML document [XHTML], then an SVGDocument object will not exist; instead, the root object in the
document object hierarchy will be a Document object of a different type, such as an HTMLDocument object.

However, an SVGDocument object will indeed exist when the root element of the XML document hierarchy isan 'svg' element, such

as when viewing a standalone SV G file (i.e., afilewith MIME type "image/svg"). In this case, the SV GDocument object will be the
the root object of the document object model hierarchy.

In the case where an SV G document is embedded by reference, such as when an XHTML document has an 'object' element whose
href attribute references an SVG document (i.e., adocument whose MIME typeis "image/svg" and whose root element is thus an
'svg' element), there will exist two distinct DOM hierarchies. The first DOM hierarchy will be for the referencing document (e.g., an
XHTML document). The second DOM hierarchy will be for the referenced SVG document. In this second DOM hierarchy, the root
object of the document object model hierarchy isan SV GDocument object.

The SVGDocument interface contains a similar list of attributes and methods to the HTMLDocument interface described in
Document Object Model (HTML) Level 1 chapter of the [DOM 1] specification.

IDL Definition

interface SVGocunent : Docunent, Docunent Event {
attribute DOVBtring title;

readonly attribute DOVString referrer;
readonly attribute DOVBtring donai n;
readonly attribute DOVBtring URL;

readonly attribute SVGSVGEl enent root El enent;

El enent getEl enentByld (in DOMString elenentld);

Attributes
DOMString title

Thetitle of adocument as specified by the title sub-element of the 'svg' root element (i.e., <svg><title>Hereisthe
title<ftitle>...</svg>)

readonly DOM String referrer

Returns the URI of the page that linked to this page. The value is an empty string if the user navigated to the page
directly (not through alink, but, for example, via a bookmark).

readonly DOM String domain

The domain name of the server that served the document, or anull string if the server cannot be identified by a
domain name.

readonly DOM String URL
The complete URI of the document.
readonly SV GSV GElement rootElement

The closest ancestor 'svg' element. If this element is an outermost 'svg' element (i.e., either it is the root element of the
document or if its parent isin a different namespace), then this attribute will be null.

Methods
getElementByld

Returns the Element whose id is given by elementld. If no such element exists, returns null. Behavior is not defined if
more than one element has thisid.

Parameters

in DOMString elementld The unique id value for an element.
Return value

Element The matching element.

No Exceptions

http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html

Interface SVGElement

All of the SVG DOM interfaces that correspond directly to elementsin the SV G language (e.g., the SV GPathElement interface
corresponds directly to the 'path’ element in the language) are derivative from base class SV GElement.

IDL Definition

interface SVGEl ement : El enent {
attribute DOVString id;
readonly attribute SVGSVGEl enent owner SVGEl enent ;
readonly attribute SVGEl ement vi ewportEl enent;

h

Attributes
DOMString id
The value of theid attribute on the given element.

readonly SV GSV GElement ownerSV GElement
The nearest ancestor 'svg' element. Null if thisis the given element is the outermost 'svg' element.
readonly SV GElement viewportElement

The element which established the current viewport. Often, the nearest ancestor 'svg' element. Null if thisisthe given
element is the outermost 'svg' el ement.

Interface SVGSVGElement

A key interface definition is the SV GSV GElement interface, which is the interface that correspondsto the 'svg' element. This

interface contains various miscellaneous commonly-used utility methods, such as matrix operations and the ability to control the
time of redraw on visual rendering devices.

IDL Definition

interface SVGSVCEl ement : SVGEl enent, SVGLangSpace, SVGTests, SVGFitToVi ewBox, Docunent Event, Event Target {
attribute DOVString cl assNane;
readonly attribute SVGRect viewport;
readonly attribute float CSSPi xel TOMIIimeterX;
readonly attribute float CSSPixel TOMIIlineterY;
readonly attribute float ScreenPixel ToMIlineterX;
readonly attribute float ScreenPixel ToMIlineterY;
attribute bool ean useCurrent Vi ew,
readonly attribute SVGVi ewSpec currentView,
attribute bool ean enabl eZoomAndPanContr ol s;
attribute float currentScale;
attribute SVGPoint currentTransl ate;
attribute SVG.ength x;
attribute SVG.ength y;
attribute SVG.ength w dth;
attribute SVG.ength height;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Styl able SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The follow ng pre-defined attribute collections are only
/] available in the DOM for Exchange SVG
EXCHANGESVCCont ai ner Attrs;
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGG adi ent Attrs;
EXCHANGESVGG aphi csAttrs;
EXCHANGESVGVar ker At trs;
EXCHANCGESVGText Cont ai ner Attrs;
EXCHANCGESVGText El ement At trs;
EXCHANGESVGVi ewpor t At trs;

#endi f EXCHANGESVG

unsi gned | ong suspendRedraw (in unsigned |ong max_wait_mlliseconds)
voi d unsuspendRedraw (in unsigned | ong suspend_handle_id)

rai ses(DOMVException);

voi d unsuspendRedrawAl | ();

voi d forceRedraw ();

voi d pauseAni mations ();

voi d unpauseAni mations ();

bool ean ani mati onsPaused ();

fl oat getCurrentTine ();

voi d setCurrentTine (in float seconds);

NodeLi st getlntersectionList (in SVGRect rect, in SVGEl enent referenceEl enent)
rai ses(SVGException);

NodelLi st get Encl osureLi st (in SVCGRect rect, in SVCGEl enent referenceEl ement)
rai ses(SVGException);

bool ean checklntersection (in SVGEl ement el enment, in SVGRect rect)
rai ses(SVGException);

bool ean checkEncl osure (in SVGEl enent elenent, in SVGRect rect)
rai ses(SVCException);

voi d deSel ect All (;

SVG\unber creat eSVG\unber ();

SVGL.engt h createSVG.ength ();

SVG.engt hLi st createSVG.engthList ();

SVGAngl e createSVGAngle ();

SVGPoi nt createSVGoint ();

SVGPoi nt Li st createSVGPoi ntList ();

SVGMWat ri x createSVG@wtrix ();

SVGPr eser veAspect Rati o creat eSVGPreserveAspectRatio ();

SVGRect createSVGRect ();

SVGTr ansf or nLi st createSVGIransforniist ();

SVGTr ansfornLi st creat eSVGIransfornii stFromvatrix (in SVGAtrix matrix);

SVGTr ansf orm createSVGIransform ();

SVGTr ansf orm creat eSVGIransfornfFromvatrix (in SVGVatrix matrix);

SVd CCCol or createSVd CCCol or ()

SVCCol or createSVCCol or ();

SVGPai nt createSVGPaint ();

El ement getEl ementByld (in DOVString elenentld);

b
Attributes

DOM String className
Corresponds to attribute class on the given element.
readonly SV GRect viewport

The position and size of the viewport (implicit or explicit) that correspondsto this 'svg' element. When the user agent
is actually rendering the content, then the position and size values represent the actual values when rendering. The
position and size values are unit-less values in the coordinate system of the parent element. If no parent element exists
(i.e., 'svg' element represents the root of the document tree), if this SVG document is embedded as part of another
document (e.g., viathe HTML 'object’ element), then the position and size are unitless values in the coordinate system
of the parent document. (If the parent uses CSS layout, then values represent CSS pixels in the coordinate system of
the current CSS viewport.) If the parent element does not have a coordinate system, then the user agent should
provide reasonable default values for this attribute.

readonly float CSSPixel ToMillimeterX

Size of aCSS pixel aong the X axis of the viewport, using the CSS2 definition of a pixel, which represents a unit
somewhere in the range of 70dpi to 120dpi, and, on systems that support this, might actually match the characteristics
of the target medium. On systems where it isimpossible to know the size of apixel, a suitable default pixel sizeis
provided.

readonly float CSSPixel ToMillimeterY
Corresponding size of a CSS pixel along the Y axis of the viewport.
readonly float ScreenPixel ToMillimeterX

Ul eventsin DOM level 2 indicate the screen positions at which the given Ul event occurred. When the user agent
actually knows the physical size of a"screen unit", this attribute will express that information; otherwise, user agents
will provide a suitable default value such as .28mm.

readonly float ScreenPixel ToMillimeterY
Corresponding size of a screen pixel aong the Y axis of the viewport.
boolean useCurrentView

Theinitial view (i.e., before zooming and panning) of the current innermost SVG document fragment can be either
the "standard" view (i.e., based on attributes on the 'svg' element such as fitBoxToViewport) or to a"custom™ view
(i.e., ahyperlink into a particular 'view' or other element - see Linking into SV G content: URI fragments and SVG
views). If theinitial view isthe "standard" view, then this attribute is false. If theinitial view isa"custom" view, then
this attribute is true.

readonly SV GViewSpec currentView

The definition of the initial view (i.e., before zooming and panning) of the current innermost SV G document
fragment. If theinitial view was a"standard" view, then:

= thevaluesfor viewBox and preserveAspectRatio and enableZoomAndPanControls within currentView will
match the values for the corresponding DOM attributes that are on SV GSV GElement directly

= the transform attribute within currentView will be null
= thetransform attribute within currentView will reference the outermost 'svg' element

boolean enableZoomAndPanControls

Corresponds to attribute enableZoomAndPanControls on the given 'svg' element.

float currentScale

In certain interactive environments, the user can zoom and pan into the current SV G document fragment. The
attribute indicates the current scale factor relative to the initial view to take into account user zooming. DOM
attributes currentScale and currentTrans ate are equivalent to the 2x3 matrix [ab c d ef] = [currentScale 0 0
currentScale currentTrangate.x currentTrans ate.y]

SV GPoint currentTranslate

The corresponding translation factor that takes into account user zooming and panning.

SV GLength x

Corresponds to attribute x on the given 'svg' element.

SVGLengthy

Corresponds to attribute y on the given 'svg' element.

SVGLength width

Corresponds to attribute width on the given 'svg' element.

SV GLength height

M ethods

Corresponds to attribute height on the given 'svg' element.

suspendRedraw

Takes atime-out value which indicates that redraw shall not occur until: (a) the corresponding
unsuspendRedraw(suspend_handle_id) call has been made, (b) an unsuspendRedrawAll() call has been made, or (c)
its timer has timed out. In environments that do not support interactivity (e.g., print media), then redraw shall not be
suspended. suspend_handle_id = suspendRedraw(max_wait_milliseconds) and
unsuspendRedraw(suspend_handle_id) must be packaged as balanced pairs. When you want to suspend redraw
actions as a collection of SVG DOM changes occur, then precede the changes to the SVG DOM with a method call
similar to suspend_handle_id = suspendRedraw(max_wait_milliseconds) and follow the changes with a method call
similar to unsuspendRedraw(suspend_handle_id). Note that multiple suspendRedraw calls can be used at once and
that each such method call is treated independently of the other suspendRedraw method calls.

Parameters

in unsigned long max_wait_milliseconds The amount of time in milliseconds to hold off before redrawing
the device. Values greater than 60 seconds will be truncated down
to 60 seconds.

Return value

unsigned long A number which acts as a unique identifier for the given suspendRedraw() call. Thisvalue
must be passed as the parameter to the corresponding unsuspendRedraw() method call.

No Exceptions

unsuspendRedraw

Cancels a specified suspendRedraw() by providing a unique suspend_handle id.
Parameters

in unsigned long suspend_handle_id A number which acts as a unique identifier for the desired
suspendRedraw() call. The number supplied must be avalue returned
from a previous call to suspendRedraw()

No Return Value
Exceptions

DOMException This method will raise a DOMException with value NOT_FOUND_ERR if aninvalid
value (i.e., no such suspend_handle _id is active) for suspend_handle_id is provided.

unsuspendRedrawAll

Cancels all currently active suspendRedraw() method calls. This method is most useful at the very end of a set of
SVG DOM callsto ensure that all pending suspendRedraw() method calls have been cancelled.

No Parameters

No Return Vaue

No Exceptions
forceRedraw

In rendering environments supporting interactivity, forces the user agent to immediately redraw all regions of the
viewport that require updating.

No Parameters

No Return Value

No Exceptions
pauseAnimations

Suspends/pauses all currently running animations that are defined within the SVG document fragment corresponding
to this'svg' e ement, causing the animation clock corresponding to this document fragment to stand still until itis
unpaused.

No Parameters

No Return Value

No Exceptions
unpauseAnimations

Unsuspends/unpauses currently running animations that are defined within the SVG document fragment, causing the
animation clock to continue from the time at which it was suspended.

No Parameters
No Return Value
No Exceptions
animationsPaused
Returnstrueif this SVG document fragment isin a paused state.
No Parameters
Return value
boolean Boolean indicating whether this SV G document fragment isin a paused state.
No Exceptions
getCurrentTime
Returns the current time in seconds relative to the start time for the current SV G document fragment.
No Parameters
Return value
float The current time in seconds.
No Exceptions
setCurrentTime
Adjusts the clock for this SV G document fragment, establishing a new current time.

Parameters
in float seconds The new current time in seconds rel ative to the start time for the current SV G document
fragment.
No Return Vaue
No Exceptions

getintersectionList

Returns the list of graphics elements whose rendered content intersects the supplied rectangle, honoring the
'pointer-events' property value on each candidate graphics element.

Parameters

in SVGRect rect The test rectangle. The values are in the initial coordinate system for the
current 'svg' element.

in SV GElement referenceElement If not null, then only return elements whose drawing order has them
below the given reference element.

No Return Vaue
Exceptions
SV GException SVG_WRONG_TYPE_ERR: Raised if the parameter is of the wrong type.

getEnclosureList

Returns the list of graphics elements whose rendered content is entirely contained within the supplied rectangle,
honoring the 'pointer-events' property value on each candidate graphics element.

Parameters

in SVGRect rect Thetest rectangle. The values arein the initial coordinate system for the
current 'svg' element.

in SV GElement referenceElement If not null, then only return elements whose drawing order has them
below the given reference element.

No Return Vaue
Exceptions
SVGException SVG_WRONG_TYPE_ERR: Raised if the parameter is of the wrong type.
checklIntersection

Returnstrue if the rendered content of the given element intersects the supplied rectangle, honoring the
'pointer-events property value on each candidate graphics element.

Parameters

in SVGElement element The element on which to perform the given test.

in SVGRect rect Thetest rectangle. The values arein the initial coordinate system for the current
'svg' element.
No Return Vaue
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if the parameter is of the wrong type.

checkEnclosure

Returnstrue if the rendered content of the given element is entirely contained within the supplied rectangle, honoring
the 'pointer-events' property value on each candidate graphics element.

Parameters
in SVGElement element The element on which to perform the given test.

in SVGRect rect Thetest rectangle. The values arein the initial coordinate system for the current
'svg' element.
No Return Vaue
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if the parameter is of the wrong type.

deSelectAll
Unselects any selected objects, including any selections of text strings and type-in bars.
No Parameters
No Return Vaue
No Exceptions
createSV GNumber
Creates an SVGNumber object outside of any document trees. The object isinitialized to the value 0.
No Parameters
Return value

SVGNumber An SVGNumber object.

No Exceptions
createSV GLength
Creates an SV GLength object outside of any document trees. The object isinitialized to the value of 0 user units.
No Parameters
Return value

SVGLength An SVGLength object.

No Exceptions
createSV GLengthList
Creates an SVGLengthList object outside of any document trees. The object isinitialized to an empty list.
No Parameters
Return value

SVGLengthList An SVGLengthList object.

No Exceptions
createSVGANgle
Creates an SV GAnNgle object outside of any document trees. The object isinitialized to the value O degrees (unitless).
No Parameters
Return value

SVGAnNgle An SVGAnNgle object.

No Exceptions
createSV GPoint

Creates an SV GPoint object outside of any document trees. The object isinitialized to the point (0,0) in the user
coordinate system.

No Parameters
Return value
SVGPoint An SV GPoint object.
No Exceptions
createSV GPointList
Creates an SV GPointList object outside of any document trees. The object isinitialized to an empty list.
No Parameters
Return value
SVGPoaintList An SVGPointList object.
No Exceptions
createSVGMatrix
Creates an SVGMatrix object outside of any document trees. The object isinitialized to the identity matrix.
No Parameters
Return value
SVGMatrix An SVGMatrix object.

No Exceptions
createSV GPreserveAspectRatio

Creates an SV GPreserveA spectRatio object outside of any document trees. The object isinitialized to the values
SVG_PRESERVEASPECTRATIO_NONE and SVG_MEETORSLICE_MEET.

No Parameters
Return value

SV GPreserveAspectRatio An SV GPreserveAspectRatio object.
No Exceptions

createSV GRect

Creates an SV GRect object outside of any document trees. The object isinitialized such that all values are set to 0
user units.

No Parameters
Return value
SVGRect An SVGRect object.

No Exceptions
createSV GTransformList
Creates an SV GTransformList object outside of any document trees. The object isinitialized to an empty list.
No Parameters
Return value
SVGTransformList An SVGTransformList object.

No Exceptions
createSV GTransformListFromMatrix

Creates an SV GTransformList object outside of any document trees. The object isinitialized to alist consisting of a
single matrix transform (i.e., SVG_TRANSFORM_MATRIX).

Parameters

in SVGMatrix matrix Theinitial transform matrix.
Return value

SVGTransformList An SVGTransformList object.

No Exceptions
createSV GTransform

Creates an SV GTransform object outside of any document trees. The object isinitialized to an identify matrix
transform (SVG_TRANSFORM_MATRIX).

No Parameters
Return value
SVGTransform An SV GTransform object.

No Exceptions
createSV GTransformFromMatrix

Creates an SV GTransform object outside of any document trees. The object isinitialized to the given matrix
transform (i.e., SVG_TRANSFORM_MATRIX).

Parameters
in SVGMatrix matrix The transform matrix.
Return value
SVGTransform An SV GTransform object.
No Exceptions
createSVGICCColor

Creates an SV GICCColor object outside of any document trees. The object isinitialized to an empty list of color
values.

No Parameters
Return value

SVGICCColor An SVGICCCaolor object.

No Exceptions
createSV GColor

Creates an SV GColor object outside of any document trees. The object is the color (0,0,0) in the SRGB color space,
with no aternate ICC color specification.

No Parameters

Return value
SVGColor An SVGColor object.
No Exceptions
createSV GPaint
Creates an SV GPaint object outside of any document trees. The object isinitialized to SYG_PAINTTYPE_NONE.
No Parameters
Return value

SVGPaint An SVGPaint object.
No Exceptions
getElementByld

Searches this SV G document fragment (i.e., the search is restricted to a subset of the document tree) for an Element
whoseid is given by elementld. If an Element isfound, that Element is returned. If no such element exists, returns
null. Behavior is not defined if more than one element has thisid.

Parameters

in DOM String elementld The unique id value for an element.
Return value

Element The matching element.
No Exceptions

Interface SVGGEIlement
The SV GGElement interface corresponds to the 'g' element.

IDL Definition

interface SVGGEl enent : SVGEl enent, SVGIransformabl e, SVG.angSpace, SVGTests, EventTarget {
attribute DOVBtring cl assNane;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Styl able SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The follow ng pre-defined attribute collections are only
/] available in the DOM for Exchange SVG
EXCHANGESVCCont ai ner Attrs;
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGG adi ent Attrs;
EXCHANGESVGG aphi csAttrs;
EXCHANGESVGVar ker At trs;
EXCHANGESVGText Cont ai ner Attrs;
EXCHANGESVGText El enent Attrs;

#endi f EXCHANGESVG

h

Attributes
DOM String className
Corresponds to attribute class on the given element.

Interface SVGDefsElement
The SV GDefsElement interface corresponds to the 'defs element.

IDL Definition

interface SVGDef sEl ement : SVGEl enent, SVGIransformabl e, SVG.angSpace {
attribute DOVBtring cl assNane;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Stylable SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Exchange SVG
EXCHANGESVGCont ai ner Attrs;
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGG adi ent Attrs;
EXCHANGESVGG aphi csAttrs;
EXCHANGESVGMVar ker At trs;
EXCHANGESVGText Cont ai ner Attrs;
EXCHANGESVGText El ement Attrs;

#endi f EXCHANGESVG

}

Attributes
DOMString className
Corresponds to attribute class on the given element.

Interface SVGDescElement

The SV GDescElement interface corresponds to the 'desc’ element.

IDL Definition

interface SVGDescEl enment : SVGEl enent, SVG.angSpace {
attribute DOVBtring cl assNane;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Stylable SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

I

Attributes
DOM String className
Corresponds to attribute class on the given element.

Interface SVGTitleElement

The SV GTitleElement interface corresponds to the 'title' element.

IDL Definition

interface SVGTitl eEl ement : SVGEl enent, SVG.angSpace {
attribute DOVString cl assNane;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Stylable SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

}

Attributes
DOMString className
Corresponds to attribute class on the given element.

Interface SVGUseElement

The SV GUseElement interface corresponds to the 'use’ element.

IDL Definition

interface SVGUseEl ement : SVGEl enent, SVGIransformable, SVG.angSpace, SVGTests, SVGURI Reference,

attribute DOVBtring cl assNane;
attribute SVG.ength x;
attribute SVG.ength y;
attribute SVG.ength w dth;
attribute SVG.ength height;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Stylable SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Exchange SVG
EXCHANGESVGCont ai ner Attrs;
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGG adi ent Attrs;
EXCHANGESVGG aphi csAttrs;
EXCHANGESVGVar ker At trs;
EXCHANGESVGText Cont ai ner Attrs;
EXCHANGESVGText El ement Attrs;
EXCHANGESVGVi ewport At trs;

#endi f EXCHANGESVG

|

Attributes
DOM String className
Corresponds to attribute class on the given element.
SV GLength x
Corresponds to attribute x on the given 'use’ element.
SVGLengthy
Corresponds to attribute y on the given 'use’ element.
SV GLength width
Corresponds to attribute width on the given 'use’ element.
SV GLength height
Corresponds to attribute height on the given 'use’ element.

Interface SVGImageElement

The SV GlmageElement interface corresponds to the 'image’ element.

IDL Definition

interface SVA mageEl ement : SVGEl enent, SVGIransfornmabl e, SVG.angSpace, SVGTests,
attribute DOVString cl assNane;
attribute SVG.ength x;
attribute SVG.ength vy;
attribute SVG.ength w dth;
attribute SVG.ength height;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/] available in the DOM for Stylable SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG

SVGAURI Ref er ence,

Event Tar get {

Event Tar get {

/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Exchange SVG
EXCHANGESVCCont ai ner Attrs;
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGG adi ent Attrs;
EXCHANGESVGG aphi csAttrs;
EXCHANGESVG\Var ker At trs;
EXCHANGESVGText Cont ai ner Attrs;
EXCHANGESVGText El enent Attrs;
EXCHANGESVGVi ewpor t Attrs;
#endi f EXCHANGESVG

I

Attributes

DOM String className

Corresponds to attribute class on the given element.
SVGLength x

Corresponds to attribute x on the given 'image’ element.
SVGLengthy

Corresponds to attribute y on the given 'image’ element.
SVGLength width

Corresponds to attribute width on the given 'image’ element.
SVGLength height

Corresponds to attribute height on the given 'image’ element.

Interface SVGSymbolElement
The SV GSymbol Element interface corresponds to the 'symbol’ element.

IDL Definition

interface SVGSynbol El ement : SVGEl enent, SVGL.angSpace, SVGFit ToVi ewBox {
attribute DOVBtring cl assNane;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Stylable SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Exchange SVG
EXCHANGESVGCont ai ner Attrs;
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGG adi ent Attrs;
EXCHANGESVGG aphi csAttrs;
EXCHANGESVGVar ker At trs;
EXCHANGESVGText Cont ai ner Attrs;
EXCHANGESVGText El ement Attrs;

#endi f EXCHANGESVG

|

Attributes
DOM String className
Corresponds to attribute class on the given element.

Interface SVGSwitchElement
The SV GSwitchElement interface corresponds to the 'switch' element.

IDL Definition

interface SVGSwi tchEl ement : SVGEl enent, SVGIransformabl e, SVG.angSpace, SVGlests, EventTarget {
attribute DOVBtring cl assNane;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
// available in the DOM for Stylable SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Exchange SVG
EXCHANGESVGCont ai ner Attrs;
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGG adi ent Attrs;
EXCHANGESVGG aphi csAttrs;
EXCHANGESVGMVar ker At trs;
EXCHANGESVGText Cont ai ner Attrs;
EXCHANGESVGText El ement Attrs;

#endi f EXCHANGESVG

|

Attributes
DOMString className
Corresponds to attribute class on the given element.

Interface SVGLangSpace

Interface SV GLangSpace defines an interface which applies to all elements which have attributes xml:lang and xml:space.

IDL Definition

interface SVG.angSpace {
attribute DOVBtring xm | ang;
attribute DOVString xnl space;
b

Attributes
DOMString xmllang
Corresponds to attribute xml:lang on the given element.
DOM String xmlspace
Corresponds to attribute xml:space on the given element.

Interface SVGTests

Interface SV GTests defines an interface which applies to all elements which have attributes system-required and system-language.

IDL Definition

interface SVGTests {
attribute DOVBtring systenRequired;
attribute DOVBtring systemlanguage;
b

Attributes
DOM String systemRequired
Corresponds to attribute system-required on the given element.
DOM String systemL anguage
Corresponds to attribute system-language on the given element.

Interface SVGURIReference

Interface SVGURIReference defines an interface which applies to all elements which have the collection of XLink attributes, such as
xlink:href, which define a URI reference.

IDL Definition

interface SVGAURI Ref erence {
attribute DOVString xlinkType;
attribute DOVString xlinkRol e;
attribute DOVString xlinkTitle;
attribute DOVString xlinkShow,
attribute DOVString xlinkActuate;
attribute DOVBtring href;

Attributes

DOMString xlinkType

Corresponds to attribute xlink:type on the given element.
DOM String xlinkRole

Corresponds to attribute xlink:role on the given element.
DOMString xlinkTitle

Corresponds to attribute xlink:title on the given element.
DOM String xlinkShow

Corresponds to attribute xlink:show on the given element.
DOM String xlinkActuate

Corresponds to attribute xlink:actuate on the given element.
DOM String href

Corresponds to attribute xlink:href on the given element.

Interface GetSVGDocument

In the case where an SV G document is embedded by reference, such as when an XHTML document has an ‘object’ element whose
href (or equivalent) attribute references an SV G document (i.e., a document whose MIME typeis"image/svg" and whose root
element isthus an 'svg' element), the SVG user agent is required to implement the GetSV GDocument interface for the element which
references the SV G document (e.g., the HTML 'object’ or comparable referencing elements).

IDL Definition

interface Get SVGDocurent {
SVGocunent get SVCDocurent ()
rai ses(DOMVException);

Methods
getSV GDocument

Returns the SV GDocument object for the referenced SV G document.
No Parameters
Return value
SVGDocument The SV GDocument object for the referenced SV G document.
Exceptions
DOMException NOT_SUPPORTED_ERR: No SVGDocument object is available.

previous next contents properties index

previous next contents properties index

/ Coordinate Systems, Transformations
and Units

Contents

7.1 Introduction

7.2 Theinitial viewport

7.3 Theinitia coordinate system

7.4 Coordinate system transformations

7.5 Nested transformations

7.6 The transform attribute

7.7 The viewBox attribute

7.8 The preserveAspectRatio attribute

7.9 Establishing a new viewport

7.10 Units

7.11 Redefining the meaning of CSS unit specifiers

7.12 Processing rules for CSS units and percentages

7.13 DOM interfaces

7.1 Introduction

For al media, the SVG canvas describes "the space where the SVG content isrendered.” The canvasis
infinite for each dimension of the space, but rendering occurs relative to afinite rectangular region of the
canvas. Thisfinite rectangular region is called the SV G viewport. For visual media[CSS2-VISUAL], the

SV G viewport isthe viewing area where the user seesthe SVG content.

The size of the SVG viewport (i.e., its width and height) is determined by a negotiation process (see
Establishing the size of theinitial viewport) between the SVG document fragment and its parent (real or

implicit). Once that negotiation process is completed, the SV G user agent is provided the following
information:

an integer value that represents the width in "pixels" of the viewport
an integer value that represents the height in "pixels’ of the viewport

« (highly desirable but not required) areal number value that indicates how many millimeters a
"pixel" represents

Using the above information, the SV G user agent determines the viewport, an initial viewport coordinate
system and an initial user coordinate system such that the two coordinates systems are identical. Both
coordinates systems are established such that the origin matches the origin of the viewport, and one unit in
theinitial coordinate system equals one "pixel” in the viewport. (See Initial coordinate system.) The
viewport coordinate system is also called viewport space and and the user coordinate system is also called
user space.

Lengthsin SV G can be specified as:
« (if no unit designator is provided) values in user space -- for example, "15"
o (if aCSS unit specifier is provided) alength in CSS units -- for example, "15mm"

The supported CSS length unit specifiers are: em, ex, px, pt, pc, cm, mm, in, and percentages.

A new user space (i.e., anew current coordinate system) can be established at any place within an SVG
document fragment by specifying transformations in the form of transformation matrices or smple
transformation operations such as rotation, skewing, scaling and translation. Establishing new user spaces
via coordinate system transformations are fundamental operations to 2D graphics and represent the usual

method of controlling the size, position, rotation and skew of graphic objects.

New viewports also can be established. By establishing a new viewport, you can redefine the meaning of
some of the various CSS unit specifiers (px, pt, pc, cm, mm, in, and percentages) and provide a new
reference rectangle for "fitting" a graphic into a particular rectangular area. ("Fit" meansthat agiven
graphic istransformed in such away that its bounding box in user space aligns exactly with the edges of a
given viewport.)

7.2 The initial viewport

The SV G user agent negotiates with its parent user agent using any CSS positioning parameters on the
outermost 'svg' el ement and the width= and height= XML attributes that are required on the 'svg' element
to determine the viewport into which the SV G user agent can render the document. In the negotiation
process, if the parent document uses CSS positioning and the outermost 'svg' element contains CSS
positioning properties [CSS2-POSN] which are sufficient to establish the width of the viewport, then the
CSS positioning properties establish the viewport's width; otherwise, the width= attribute on the
outermost 'svg' el ement establishes the viewport's width. Similarly, if the parent document uses CSS
positioning and the outermost 'svg' element contains CSS positioning properties [CSS2-POSN] which are
sufficient to establish the height of the viewport, then the CSS positioning properties establish the
viewport's height; otherwise, the height= attribute on the outermost 'svg' element establishes the
viewport's height.

If the width= or height= attributes on the outermost 'svg' element are in user units (i.e., no unit specifier
has been provided), then the value is assumed to be equivalent to the same number of CSS "px" units.

In the following example, an SV G graphic is embedded within a parent XML document whichis
formatted using CSS layout rules. Since CSS positioning properties are not provided on the outermost
'svg' element, the width="100px" and height="200px" attributes determine the size of theinitial viewport:

<?xm version="1.0" standal one="yes" ?>
<parent xmns="http://some.url">

<l-- SVG graphic -->

<svg xm ns="http://ww. w3. or g/ 2000/ svg- 20000303- st yl abl e’
wi dt h="100px" hei ght ="200px" >
<pat h d="ML00, 100 @00, 400, 300, 100"/ >
<l-- rest of SVG graphic would go here -->

</ svg>

</ par ent >

Download this example

Theinitia clipping path for the SV G document fragment is established according to the rules described in
Theinitial clipping path.

7.3 The initial coordinate system

For the outermost 'svg' element, the SV G user agent determines an initia viewport coordinate system and

an initial user coordinate system such that the two coordinates systems are identical. The origin of both
coordinate systemsis at the origin of the viewport, and one unit in the initial coordinate system equals one
"pixel" in the viewport. In most cases, such as stand-alone SV G documents or SV G document fragments
embedded within XML parent documents where the parent's layout is determined by CSS [CSS2] or XSL

[XSL], theinitia viewport coordinate system (and therefore the initial user coordinate system) hasits

origin at the top/left of the viewport, with the positive X axis pointing towards the right, the positive Y
axis pointing down, and text rendered with an "upright” orientation, which means glyphs are oriented such
that Roman characters and full-size ideographic characters for Asian scripts have the top edge of the
corresponding glyphs oriented upwards and the right edge of the corresponding glyphs oriented to the
right.

Example Initial Coords below shows that the initial coordinate system has the origin at the top/left with the
X axis pointing to theright and the Y axis pointing down. The initial user coordinate system has one user
unit equal to the parent (implicit or explicit) user agent's "pixel”.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ \WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg w dt h="300px" hei ght="100px" >

<desc>Exanpl e Initial Coords - SVG s initial coordinate systenx/desc>

<g style="fill:none; stroke: bl ack; stroke-w dth:3">
<line x1="0" y1="1.5" x2="300" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="100" />

</ g>

<g style="fill:red; stroke:none">
<rect x="0" y="0" w dth="3" height="3" />
<rect x="297" y="0" wi dth="3" height="3" />
<rect x="0" y="97" wi dth="3" height="3" />

</ g>

<g style="font-size:14 font-famly: Verdana">
<text x="10" y="20">(0,0)</text>
<text x="240" y="20">(300,0)</text>
<text x="10" y="90">(0, 100) </t ext>

</ g>

</ svg>

file:///d|/public/svgspec/samples/viewport.xml

(0,0) (300,0)

(0,100)

Example Initial Coords
View this example as SV G (SV G-enabled browsers only)

7.4 Coordinate system transformations

A new user space (i.e., anew current coordinate system) can be established by specifying transformations
in the form of atransform attribute on a container element or graphics element. The transform attribute
transforms all user space coordinates and lengths on the given element and all of its ancestors.
Transformations can be nested, in which case the effect of the transformations are cumulative.

The following demonstrates simple transformations:

Example OrigCoordSys below shows a document without transformations. The text string is specified in
theinitial coordinate system.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="400px" hei ght =" 150px" >
<desc>Exanpl e Ori gCoordSys - Sinple transformations: original picture</desc>
<g style="fill:none; stroke: bl ack; stroke-wi dth:3">
<I-- Draw the axes of the original coordinate system-->
<line x1="0" yl1="1.5" x2="400" y2="1.5" />
<line x1="1.5" yl1="0" x2="1.5" y2="150" />
</ g>
<g>
<text x="30" y="30" style="font-size:20 font-fanily:Verdana">
ABC (orig coord systen
</text>
</ g>
</ svg>

file:///d|/public/svgspec/images/coords/InitialCoords.svg

ABC (orig coord system)

Example OrigCoordSys

View this example as SV G (SV G-enabled browsers only)

Example NewCoordSys establishes a new user coordinate system by specifying

transform="trang ate(50,50)" on the third 'g' element below. The new user coordinate system hasits origin
at location (50,50) in the original coordinate system. The result of this transformation is that the
coordinate (30,30) in the new user coordinate system gets mapped to coordinate (80,80) in the original
coordinate system (i.e., the coordinates have been translated by 50 unitsin X and 50 unitsinY).

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="400px" hei ght =" 150px" >
<desc>Exanpl e NewCoor dSys - New user coordi nate systenx/desc>
<g style="fill:none; stroke: bl ack; stroke-w dth:3">
<I-- Draw the axes of the original coordinate system-->
<line x1="0" yl1l="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />
</ g>
<g>
<text x="30" y="30" style="font-size:20 font-fanily:Verdana">
ABC (orig coord systen
</text>
</ g>
<l-- Establish a new coordi nate system which is
shifted (i.e., translated) fromthe initial coordinate
system by 50 user units along each axis. -->
<g transform="transl at e(50, 50)" >
<g style="fill:none; stroke:red; stroke-w dth:3">
<!-- Draw lines of length 50 user units al ong
the axes of the new coordinate system-->
<line x1="0" y1="0" x2="50" y2="0" style="stroke:red"/>
<line x1="0" yl1l="0" x2="0" y2="50" />
</ g>
<text x="30" y="30" style="font-size:20 font-famly: Verdana">
ABC (transl ated coord systen)
</text>
</ g>
</ svg>

file:///d|/public/svgspec/images/coords/OrigCoordSys.svg

ABC (orig coord system)

ABC (translated coord system)

Example NewCoordSys

View this example as SV G (SV G-enabled browsers only)

Example RotateScale illustrates simple r otate and scale transformations. The example defines two new
coordinate systems:

« onewhichistheresult of atrandation by 50 unitsin X and 30 unitsin Y, followed by arotation of
30 degrees

« another which isthe result of atransation by 200 unitsin X and 40 unitsin Y, followed by a scale
transformation of 1.5.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg w dt h="400px" hei ght ="120px" >
<desc>Exanpl e RotateScale - Rotate and scal e transforns</desc>
<g style="fill:none; stroke: bl ack; stroke-w dth:3">
<!-- Draw the axes of the original coordinate system-->
<line x1="0" yl1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="120" />
</ g>
<l-- Establish a new coordi nate system whose origin is at (50, 30)
inthe initial coord. systemand which is rotated by 30 degrees. -->
<g transform="transl at e(50, 30)">
<g transform="rotate(30)">
<g style="fill:none; stroke:red; stroke-w dth:3">
<line x1="0" y1l="0" x2="50" y2="0" />
<line x1="0" yl1l="0" x2="0" y2="50" />

</ g>
<text x="0" y="0" style="font-size:20; font-famly:Verdana; fill:blue">
ABC (rotate)
</ text>
</ g>
</ g>
<I-- Establish a new coordi nate system whose origin is at (200, 40)
in the initial coord. systemand which is scaled by 1.5. -->

<g transform="transl at e(200, 40) ">
<g transform="scal e(1.5)">
<g style="fill:none; stroke:red; stroke-w dth:3">
<line x1="0" yl1="0" x2="50" y2="0" />
<line x1="0" yl1l="0" x2="0" y2="50" />
</ g>
<text x="0" y="0" style="font-size:20; font-famly:Verdana; fill:blue">
ABC (scal e)
</ text>
</ g>

file:///d|/public/svgspec/images/coords/NewCoordSys.svg

</ g>
</ svg>

scale)

(7, by
€)

Example RotateScale

View this example as SV G (SV G-enabled browsers only)

Example Skew defines two coordinate systems which are skewed relative to the origin coordinate system.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ \D- SVG- 20000303/ DTDJ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="400px" hei ght ="120px" >
<desc>Exanpl e Skew - Show effects of skewX and skewY</desc>
<g style="fill:none; stroke: bl ack; stroke-w dth:3">
<!-- Draw the axes of the original coordinate system-->
<line x1="0" yl1l="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="120" />
</ g>
<l-- Establish a new coordi nate system whose origin is at (30, 30)
inthe initial coord. systemand which is skewed in X by 30 degrees. -->
<g transform="transl at e(30, 30)">
<g transform="skewX(30)">
<g style="fill:none; stroke:red; stroke-w dth:3">
<line x1="0" yl1="0" x2="50" y2="0" />
<line x1="0" yl="0" x2="0" y2="50" />

</ g>
<text x="0" y="0" style="font-size:20; font-famly:Verdana; fill:blue">
ABC (skewX)
</t ext>
</ g>
</ g>
<!-- Establish a new coordinate systemwhose origin is at (200, 30)
in the initial coord. systemand which is skewed in Y by 30 degrees. -->

<g transform="transl at e(200, 30) ">
<g transform="skewy(30)">
<g style="fill:none; stroke:red; stroke-w dth:3">
<line x1="0" yl="0" x2="50" y2="0" />
<line x1="0" yl1="0" x2="0" y2="50" />

</ g>
<text x="0" y="0" style="font-size:20; font-famly:Verdana; fill:blue">
ABC (skewY)
</text>
</ g>
</ g>

</ svg>

file:///d|/public/svgspec/images/coords/RotateScale.svg

%&\@m\ FEQ(
Sk E‘W\,)

Example Skew

View this example as SV G (SV G-enabled browsers only)

Mathematically, all transformations can be represented as 3x3 transformation matrices of the following
form:

oo o
o0 O
= =h (D

Since only six values are used in the above 3x3 matrix, a transformation matrix is also expressed as a
vector: [ab cd ef].

Transformations map coordinates and lengths from a new coordinate system into a previous coordinate
system:

Kpre-.ntn::-n::-rd Svs d ¢ € u xnewtmrd‘ii-,:s
I:F'I|:-r|a1..".‘:|:-|:ur1:| Cws — b d f Y newCoord Ty
1 0 0 1 1

Simple transformations are represented in matrix form as follows:
« Trandation isequivalent to the matrix

1 0 tx
0 1 ty
0 0 1

or [100 1 tx ty], where tx and ty are the distances to translate coordinatesin X and Y, respectively.

« Scaling is equivalent to the matrix

file:///d|/public/svgspec/images/coords/Skew.svg

sx 0 0
0 sy O
0 0 1

or [sx 00 sy 00]. Oneunit inthe X and Y directions in the new coordinate system equals sx and sy
unitsin the previous coordinate system, respectively.

« Rotation is equivalent to the matrix
cos(a) -sin(a) 0

sin(a) cos(a) 0
0 0 1

or [cos(a) sin(a) -sin(a) cos(a) 0 0], which has the effect of rotating the coordinate system axes by
anglea.

« A skew transformation along the X axisis equivalent to the matrix

1 tan(a) 0
0 1 ©
0o 0 1

or [10tan(a) 1 0 0], which hasthe effect of skewing X coordinates by angle a.

« A skew transformation along the Y axisis equivalent to the matrix

1 0 0
tan(a) 1 0
0 0 1

or [1tan(a) 0 1 0 0], which hasthe effect of skewing Y coordinates by angle a.

7.5 Nested transformations

Transformations can be nested to any level. The effect of nested transformations is to post-multiply (i.e.,
concatenate) the subsequent transformation matrices onto previously defined transformations:

xpre».-' — d1C1 84 dz (€3 Xeurr
Y prev — t:’1 ':Il 1E1 * bzdz f}l * Ycurr
1 001 001 1

For each given element, the accumulation of all transformations that have been defined on the given
element and all of its ancestors up to and including the element which established the current viewport
(usually, the 'svg' element which is the most immediate ancestor to the given element) is called the current
transformation matrix or CTM. The CTM thus represents the mapping of current user coordinates to
viewport coordinates:

—_— 94,08 d; Lz &;
CTM = |odr || odan] -
00

1 001 see

=

=
m

3

oo W
oan
:—h

[

Xviewport —_ Xuserspace
Yviewport — * | Yuserspace

1 1

Example Nested illustrates nested transformations.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg w dt h="400px" hei ght =" 150px" >
<desc>Exanpl e Nested - Nested transfornati ons</desc>
<g style="fill:none; stroke: bl ack; stroke-w dth:3">
<!-- Draw the axes of the original coordinate system-->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />
</ g>
<I-- First, atranslate -->
<g transform="transl at e(50.90)">
<g style="fill:none; stroke:red; stroke-w dth:3">
<line x1="0" yl1="0" x2="50" y2="0" />
<line x1="0" yl1="0" x2="0" y2="50" />
</ g>
<text x="0" y="0" style="font-size:16; font-fanily:Verdana">
....Transl ate(1)

</text>
<l-- Second, a rotate -->
<g transform="rotate(-45)">
<g style="fill:none; stroke:green; stroke-wi dth:3">

<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />

</ g>

<text x="0" y="0" style="font-size:16; font-famly:Verdana">
....Rotate(2)

</ text>

<l-- Third, another translate -->

<g transform="transl at e(130, 160) ">
<g style="fill:none; stroke:blue; stroke-w dth:3">

<line x1="0" yl1l="0" x2="50" y2="0" />
<line x1="0" yl="0" x2="0" y2="50" />
</ g>
<text x="0" y="0" style="font-size:16; font-famly: Verdana">
.. Transl ate(3)
</text>
</ g>
</ g>
</ g>
</ svg>

Example Nested

View this example as SV G (SV G-enabled browsers only)

In the example above, the CTM within the the third nested transformation (i.e,, the
transform="translate(130,160)") consists of the concatenation of the three transformations, as follows:

CTM — translate(50,90), rotate(-45), translate(130,160)

0 50 J07 707 0 0
1 90 - ?D}' ?D? Cl 1
01 0

707 .707 255.03
-.707 707 111.21
0 0 1

Xinitial Xuserspace
Yinitial ?uﬁerﬁ pace
1

I
o =

o

file:///d|/public/svgspec/images/coords/Nested.svg

7.6 The transform attribute

The value of the transform attribute is a <transform-list>, which is defined as alist of transform
definitions, which are applied in the order provided. The individual transform definitions are separated by
whitespace and/or acomma. The available types of transform definitions include:

o matrix(<a> <c> <d> <e> <f>), which specifies a transformation in the form of transformation
matrix of six values. matrix(a,b,c,d,ef) is equivaent to applying the transformation matrix [ab cd
ef]. The eand f values can be specified with CSS unit specifiers.

« trandate(<tx> [<ty>]), which specifies atranslation by tx and ty. tx and ty values can be specified
with CSS unit specifiers.

« scale(<sx> [<sy>]), which specifies a scale operation by sx and sy. If <sy> isnot provided, it is
assumed to be equal to <sx>.

« rotate(<rotate-angle>), which specifies arotation by <rotate-angle> about the origin of the current
user coordinate system.

« skewX(<skew-angle>), which specifies a skew transformation along the X axis.

« skewY (<skew-angle>), which specifies a skew transformation along the Y axis.

All numeric values are real numbers. All angle values are expressed according to the rules for basic data
type <angle>.

If alist of transformsis provided, then the net effect isasif each transform had been specified separately
in the order provided. For example,

<g transform="transl ate(-10,-20) scale(2) rotate(45) translate(5,10)">
<!-- graphics elements go here -->
</ g>

isfunctionally equivalent to:

<g transform="transl ate(-10,-20)">
<g transforn¥"scal e(2)">
<g transform="rotate(45)">
<g transforn¥"transl ate(5, 10)">
<!-- graphics elenents go here -->
</ g>
</ g>
</ g>
</ g>

The transform attribute is applied to an element before processing any other coordinate or length values
supplied for that element. In the element

<rect x="10" y="10" wi dt h="20" hei ght="20" transform="scale(2)"/>

the x, y, width and height values are processed after the current coordinate system has been scaled
uniformly by afactor of 2 by the transform attribute. Attributes x, y, width and height (and any other

attributes or properties) are treated as values in the new user coordinate system, not the previous user
coordinate system. Thus, the above 'rect’ element is functionally equivalent to:

<g transforn¥"scal e(2)">
<rect x="10" y="10" width="20" hei ght="20"/>

</ g>

The following isthe BNF for values for the transform attribute. The following notation is used:
e *:00r more
e +:1o0r more
e 200r1

(): grouping

|: separates alternatives

« double quotes surround literals

transformlist:
wsp* transforms? wsp*

transformns:
transform
| transform conma-wsp+ transforns

transform

mat ri X

| translate
| scale
| rotate
| skewX
| skewY

matri x:

"matrix" wsp* "(" wsp*
nurber comma- wsp
nurmber comma- wsp
nunber comma-wsp
nunber comma-wsp
| ength comma- wsp
| ength wsp* ")"

transl ate:
“translate" wsp* "(" wsp* length (comma-wsp length)? wsp* ")"

scal e:
"scal " wsp* "(" wsp* length (coma-wsp nunber)? wsp* ")"

rotate:
"rotate" wsp* "(

n n

wsp* nunber wsp* ")

skewX:
"skewX" wsp* "(" wsp* nunber wsp* ")"

skewy:
"skewY" wsp* "(" wsp* number wsp* ")"

| engt h:
nunber unit-specifier?

nunber :
sign? integer-constant
| sign? floating-point-constant

conma- Wsp:

(wsp+ coma? wsp*) | (conma wsp*)
conma:
i nt eger - const ant :
di gi t-sequence
f1 oati ng- poi nt-constant:
fractional - constant exponent ?
| digit-sequence exponent
fractional -constant:
di git-sequence? "." digit-sequence

| digit-sequence "."

exponent :
("e" | "E") sign? digit-sequence

si gn:
" +II | " "

di gi t - sequence
digit
| digit digit-sequence

digit:
"o" | "a" | "2" | "3 | "4" | "5" | "€e" | "7" | "8 | "9

uni t-specifier:
"emd| "ex" | "px" | "pt" | "pc" | "cmd | "smmd | "in" | "W

wsp:
(#x20 | #x9 | #xD | #xA

For the transform attribute:

Animatable: yes.

See the "animateTransform' element for information on animating transformations.

7.7 The viewBox attribute

It is often desirable to specify that a given set of graphics stretch to fit a particular container element. The
viewBox attribute provides this capability.

All elements that establish a new viewport (see elements that establish viewports) have attribute viewBox.

The value of the viewBox attribute isalist of four numbers <min-x>, <min-y>, <width> and <height>
which specify arectangle in user space which should be mapped to the bounds of the viewport established
by the given element, taking into account attribute preserveAspectRatio. If specified, an additional

transformation is applied to al descendants of the given element to achieve the specified effect.

Example ViewBox illustrates the use of the viewBox attribute on the outermost 'svg' element to specify
that the SV G content should stretch to fit bounds of the viewport.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="300px" hei ght ="200px"
vi ewBox="0 0 1500 1000" preserveAspectRati o="none" >
<desc>Exanpl e Vi ewBox - uses the vi ewBox

attribute to automatically create an initial user coordinate
system whi ch causes the graphic to scale to fit into the
viewport no natter what size the viewport is.</desc>

<l-- This rectangle goes from(0,0) to (1500,1000) in user space.
Because of the viewBox attribute above,
the rectangle will end up filling the entire area
reserved for the SVG content. -->

<rect x="0" y="0" w dth="1500" hei ght="1000" style="fill:yellow" />

<l-- Alarge, red triangle -->
<path style="fill:red" d="M 750, 100 L 250,900 L 1250, 900 z"/>

<I-- Atext string that spans nost of the viewport -->
<text x="100" y="600" style="font-size:150; font-famly: Verdana">
Stretch to fit

</ text>
</ svg>
Rendered into Rendered into
viewport with viewport with
width=300px, width=150px,
height=200px height=200px

Str fit | St fit

Example ViewBox

View this example as SV G (SV G-enabled browsers only)

The effect of the viewBox attribute is that the user agent automatically supplies the appropriate
transformation matrix to map the specified rectangle in user space to the bounds of the viewport. To
achieve the effect of the example on the left, with viewport dimensions of 300 by 200 pixels, the user
agent needs to automatically insert a transformation which scalesboth X and Y by 0.2. The effect is
equivalent to having a viewport of size 300px by 200px and the following supplemental transformation in
the document, as follows:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="300px" hei ght ="200px" >

<g transform="scal e(0.2)">

file:///d|/public/svgspec/images/coords/ViewBox.svg

<!-- Rest of docunment goes here -->

</ g>
</ svg>
To achieve the effect of the example on the right, with viewport dimensions of 150 by 200 pixels, the user
agent needs to automatically insert a transformation which scales X by 0.1 and Y by 0.2. The effect is
equivalent to having a viewport of size 150px by 200px and the following supplemental transformation in
the document, as follows:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="150px" hei ght ="200px" >

<g transform="scale(0.1 0.2)">
<!-- Rest of docunment goes here -->

</ g>
</ svg>

(Note: in some cases the user agent will need to supply atrandate transformation in addition to a scale
transformation. For example, on an outermost 'svg’, atranslate transformation will be needed if the

viewBox attributes specifies values other than zero for <min-x> or <min-y>.)
For the viewBox attribute:

Animatable: yes.

7.8 The preserveAspectRatio attribute

In some cases when using the viewBox attribute, it is desirable that the graphics stretch to fit
non-uniformly to take up the entire viewport. In other cases when using the viewBox attribute, it is
desirable that uniform scaling be used for the purposes of preserving the aspect ratio of the graphics.
Attribute preserveAspectRatio="<align> [<meetOrSlice>]", which is available for all elements that
establish a new viewport (see elements that establish viewports), indicates whether or not to force uniform
scaling. The <align> parameter indicates whether to force uniform scaling and, if so, the alignment
method to use in case the aspect ratio of the viewBox doesn't match the aspect ratio of the viewport. The
<align> parameter must be one of the following strings:

« none - Do not force uniform scaling. Scale the graphic content of the given element non-uniformly
if necessary such that the element's bounding box exactly matches the viewport rectangle.

« XMinYMin - Force uniform scaling.
Align the <min-x> of the element’s viewBox with the smallest X value of the viewport.
Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.

« XMidYMin - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.
Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.

« XMaxYMin - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the
viewport.
Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.

« XMinYMid - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.

Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.

« XMidYMid (the default) - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.
Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.

« XMaxYMid - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the
viewport.
Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.

« XMinYMax - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.
Align the <min-y>+<height> of the element’s viewBox with the maximum Y value of the
viewport.

« XxMidYMax - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.
Align the <min-y>+<height> of the element's viewBox with the maximum Y value of the
viewport.

« XMaxYMax - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the
viewport.
Align the <min-y>+<height> of the element's viewBox with the maximum Y value of the
viewport.

The <meetOrSlice> parameter is optional and must be one of the following strings:
« Mmeet (the default) - Scale the graphic such that:
0 aspect ratio is preserved
o theentire viewBox is visible within the viewport
o theviewBox is scaled up as much as possible, while still meeting the other criteria

In this case, if the aspect ratio of the graphic does not match the viewport, some of the viewport
will extend beyond the bounds of the viewBox (i.e., the areainto which the viewBox will draw
will be smaller than the viewport).

« dlice- Scale the graphic such that:
0 aspect ratio is preserved
o the entire viewport is covered by the viewBox
o theviewBox is scaled down as much as possible, while still meeting the other criteria

In this case, if the aspect ratio of the viewBox does not match the viewport, some of the viewBox
will extend beyond the bounds of the viewport (i.e., the areainto which the viewBox will draw is
larger than the viewport).

Example PreserveAspectRatio illustrates the various options on preserveAspectRatio. To save space,

XML entities have been defined for the three repeated graphic objects, the rectangle with the smileinside
and the outlines of the two rectangles which have the same dimensions as the target viewports. The
example creates several new viewports by including 'svg' sub-elements embedded inside the outermost
'svg' element (see Establishing a new viewport). The smileis drawing the text string ":)" rotated 90

degrees.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- styl abl e. dtd" [

<IENTITY Smle "
<rect x='.5" y='".5" width="29" height="39" style="fill:yellow stroke:red />
<g transform=' rotate(90)' >
<text x='"10" y='"10" style='font-fanily: Verdana,;
font-wei ght: bold; font-size:14'>:)</text>

</ g>">
<IENTITY Viewportl "<rect x='.5" y=".5" w dth="49" height="29'
style='fill:none; stroke:blue'/>">
<IENTITY Viewport2 "<rect x='.5" y=".5" w dth="29" height="59'
style="fill:none; stroke:blue'/>">
1>

<svg w dt h="480px" hei ght ="270px" style="font-family: Verdana; font-size:8">
<desc>Exanpl e PreserveAspectRatio - denonstrate avail abl e opti ons</desc>
<text x="10" y="30">SVGto fit</text>
<g transforn¥"transl at e(20, 40)">&Sm | e; </ g>
<text x="10" y="110">Vi ewport 1</text>
<g transform="transl ate(10, 120) " >&Vi ewport 1; </ g>
<text x="10" y="180">Viewport 2</text>
<g transfornm="transl ate(20, 190) " >&Vi ewport 2; </ g>
<text x="100" y="30">--------------- meet --------------- </text>
<g transforne"transl at e(100, 60) " ><t ext y="-10">xM n*</t ext >&Vi ewport 1;
<svg preserveAspectRati o="xM nYM n neet" vi ewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sm | e; </ svg></g>
<g transforn¥"transl ate(170, 60)"><text y="-10">xM d*</text>&Vi ewport1;
<svg preserveAspectRati o="xM dYM d neet" vi ewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sm | e; </ svg></ g>
<g transforme"transl at e(240, 60) "><t ext y="-10">xMax* </t ext>&Vi ewport1;
<svg preserveAspect Rati o="xMaxYMax meet" vi ewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sni | e; </ svg></g>
<text x="330" y="30">---------- meet ---------- </text>
<g transforn¥"transl at e(330, 60) "><text y="-10">*YM n</text>&Vi ewport 2;
<svg preserveAspectRati o="xM nYM n neet" vi ewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sni | e; </ svg></ g>
<g transform="transl at e(380, 60) "><text y="-10">*YM d</t ext>&Vi ewport 2;
<svg preserveAspectRati o="xM dYM d neet" vi ewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Snmi | e; </ svg></g>
<g transforne"transl at e(430, 60) " ><t ext y="-10">*YMax</t ext >&Vi ewport 2;
<svg preserveAspect Rati o="xMaxYMax meet" vi ewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Smi | e; </ svg></g>
<text x="100" y="160">---------- slice ---------- </text>
<g transform="transl ate(100, 190) "><text y="-10">xM n*</text>&Vi ewport 2;
<svg preserveAspectRati o="xM nYM n slice" viewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sni | e; </ svg></ g>
<g transforn¥"transl at e(150, 190) " ><t ext y="-10">xM d* </t ext >&Vi ewport 2;
<svg preserveAspectRati o="xM dYM d slice" viewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sm | e; </ svg></g>
<g transforn¥"transl ate(200, 190) "><text y="-10">xMax*</t ext>&Vi ewport 2;
<svg preserveAspect Rati o="xMaxYMax slice" viewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sm | e; </ svg></ g>
<text x="270" y="160">--------------- slice -----------u--- </text>
<g transforne"transl ate(270, 190) "><t ext y="-10">*YM n</t ext >&Vi ewport 1;
<svg preserveAspectRati o="xM nYM n slice" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Snmi | e; </ svg></g>
<g transforn¥"transl at e(340, 190) "><text y="-10">*YM d</t ext >&Vi ewport 1;
<svg preserveAspectRati o="xM dYM d slice" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sni | e; </ svg></ g>
<g transform="transl ate(410, 190) "><text y="-10">*YMax</text>&Vi ewport1;
<svg preserveAspect Rati o="xMaxYMax slice" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Snmi | e; </ svg></g>
</ svg>

SWGtofih - MEeet e e mest -—----—--—-

. sMin™® sMid* sMax® *min *Ymid - *Ymax
~ ~ ~ S .
- mm
Viewport 1 Mot
—————————— slice ----—----- =[5
ewport 2 sMint =Mid* wMax® ik d Ty A AR

S n] e e

o e’

Example PreserveAspectRatio

View this example as SV G (SV G-enabled browsers only)

For the preserveAspectRatio attribute:

Animatable: yes.

7.9 Establishing a new viewport

At any point in an SV G drawing, you can establish a new viewport into which all contained graphicsis
drawn by including an 'svg' element inside SV G content. By establishing a new viewport, you also
implicitly establish anew initial user space, new meanings for many of the CSS unit specifiers and,
potentially, a new clipping path. The bounds of the new viewport are defined by the x, y, width and height
attributes on the 'svg' element. Hereis an example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="4in" hei ght="3in">
<desc>Thi s SVG drawi ng enbeds anot her one,
thus establishing a new vi ewport
</ desc>
<l-- The follow ng statenent establishing a new vi ewport
and renders SVG drawing B into that viewport -->
<svg x="25% y="25% wi dth="50% height="50% >
<!-- drawi ng B goes here -->
</ svg>
</ svg>

For an extensive example of creating new viewports, see Example PreserveAspectRatio.

In addition to the 'svg’ element, the following other elements also establish a new viewport:
« A 'use or'image element establishes atemporary new viewport for drawing instances of

file:///d|/public/svgspec/images/coords/PreserveAspectRatio.svg

referenced elements or files

« A 'marker' element establishes atemporary new viewport for drawing arrowheads and
polymarkers

« When apattern is used to fill or stroke an object by reference to a 'pattern’ element, atemporary
new viewport is established for each drawn instance of the pattern.

« When a'mask’' element is used to establish a mask for an object and
maskUnits="objectBoundingBox", atemporary new viewport is established to draw the elements
within the 'mask’ element.

« A 'foreignObject’ element creates a new viewport for rendering the content that is within the
element.

Whether a new viewport also establishes anew additional clipping path is determined by the value of the
‘overflow' property on the element which establishes the new viewport. If aclipping path is created to

correspond to the new viewport, the clipping path's geometry is determined by the value of the 'clip’
property. Also, see Clip to viewport vs. clip to viewBox.

7.10 Units

All coordinates and lengths in SV G can be specified in one of the following ways:

« User units. If no unit specifier is provided, agiven coordinate or length is assumed to be in user
units (i.e., avalue in user space). For example:

<text style="font-size: 50">Text size is 50 user units</text>

« CSSunits. If aCSS unit specifier is provided on a coordinate or length value, then the given value
is assumed to bein CSS units. Available CSS unit specifiers are the absolute and relative unit
specifiers from CSS (em, ex, px, pt, pc, cm, mm, in and percentages). Asin CSS, the em and ex
unit specifiers are relative to the current font's font-size and x-height, respectively. Initially, the
various absolute unit specifiers from CSS (i.e., px, pt, pc, cm, mm, in) represent lengths within the
initial user coordinate system and do not change their meaning as transformations alter the current
coordinate system. Thus, "12pt" can be made to represent exactly 12 points on the actual visual
medium even if the user coordinate system has been scaled. For example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ \D- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="4in" hei ght="3in">
<desc>Denonstrati on of coordinate transforns
</ desc>
<l-- The following two text elements will both draw with a
font height of 12 pixels -->
<text style="font-size: 12">This prints 12 pixels high.</text>
<text style="font-size: 12px">This prints 12 pixels high. </text>

<I-- Now scal e the coordi nate systemby 2. -->
<g transfornm="scal e(2)">

<l-- The following text will actually draw 24 pixels high
because each unit in the new coordi nate system equal s
2 units in the previous coordinate system -->

<text style="font-size: 12">This prints 24 pixels high. </text>

<l-- The following text will actually still draw 12 pixels high
because the CSS unit specifier has been provided. -->

<text style="font-size: 12px">This prints 12 pixels high. </text>

</ g>
</ svg>

Download this example

If possible, the SV G user agent must be passed the actual size of a px unit in inches or millimeters by its
parent user agent. (See Conformance Requirements and Recommendations.) If such information is not
available from the parent user agent, then the SV G user agent shall assume a px is defined to be exactly
.28mm.

7.11 Redefining the meaning of CSS unit specifiers

The process of establishing a new viewport, such as when thereis 'svg' element inside of another SVG
'svd', changes the meaning of the following CSS unit specifiers: px, pt, pc, cm, mm, in, and %
(percentages). A "pixel” (the px unit) becomes equivalent to asingle unit in the user coordinate system for
the given 'svg' element. The meaning of the other absolute unit specifiers (pt, pc, cm, mm, in) are
determined as an appropriate multiple of a px unit using the actual size of px unit (as passed from the
parent user agent to the SV G user agent). Any percentage values that are relative to the current viewport
will also represent new values.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
“http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="300px" hei ght =" 300px" >
<desc>Transformation with establishment of a new vi ewport
</ desc>
<l-- The following two text elements will both draw with a
font height of 12 pixels -->
<text style="font-size: 12">This prints 12 pixels high.</text>
<text style="font-size: 12px">This prints 12 pixels high. </text>

<l-- Now scal e the coordinate systemby 2. -->
<g transforme"scal e(2)">

<l-- The following text will actually draw 24 pixels high
because each unit in the new coordi nate system equal s
2 units in the previous coordinate system -->

<text style="font-size: 12">This prints 24 pixels high.</text>

<l-- The following text will actually still draw 12 pixels high
because the CSS unit specifier has been provided. -->
<text style="font-size: 12px">This prints 12 pixels high.</text>
</ g>

<l-- This time, scale the coordinate systemby 3. -->
<g transforn¥"scal e(3)">

<!-- Establish a new viewport and thus change the neani ng of
some CSS unit specifiers. -->

<svg style="left:0; top:0; right:100; bottom 100"
wi dt h="100% hei ght ="100% >

<l-- The following two text elements will both draw with a
font height of 36 screen pixels. The first text element
defines its height in user coordi nates, which have been
scal ed by 3. The second text el ement defines its height
in CSS px units, which have been redefined to be three tines
as big as screen pixels due the <svg> el ement establishing
a new vi ewport. -->

file:///d|/public/svgspec/samples/transform.xml

<text style="font-size: 12">This prints 36 pixels high. </text>
<text style="font-size: 12px">This prints 36 pixels high.</text>

</ svg>

</ g>

</ svg>

Download this example

7.12 Processing rules for CSS units and
percentages

Any values expressed in CSS units or percentages of the current viewport are mapped to corresponding
valuesin user space as follows:

For any x-coordinate value or width value (xVauelnV PSpace) expressed using CSS units (other
than percentages), first convert xVValuelnVPSpace into viewport pixel units using the SVG user
agent's standard conversion factor from pixelsto real world units (e.g., millimeters) to yield
xValuelnVPPixels. Then transform the points (0,0) and (xVauelnV PPixels,0), from viewport
space to current user space using the inverse of the current transformation matrix, yielding two
points in userspace Q1 and Q2. Do a distance calculation between Q1 and Q2 (sgrt((Q2x-Q1x)**2
+ (Q2y-Q1ly)**2)) and use that as the value for the given operation.

For any y-coordinate value or height value (yValuelnVPSpace) expressed using CSS units (other
than percentages), then use the same method as above, except use points (0,0) and
(O,yVauelnVPPixels) instead.

For any x-coordinate value or width value (xVauelnVPSpace) expressed as a percentage of the
viewport, transform the points (0,0) and (percentageV alue* vpWidthinPixels,0), from viewport
space to current user space using the inverse of the current transformation matrix, yielding two
points in userspace Q1 and Q2. Do a distance calculation between Q1 and Q2 (sgrt((Q2x-Q1x)**2
+ (Q2y-Q1ly)**2)) and use that as the value for the given operation.

For any y-coordinate value or height value (yVauelnVPSpace) expressed as a percentage of the
viewport, then use the same method as above, except use points (0,0) and
(O,percentageV alue* vpHeightlnPixels) instead.

For any other length value in viewport space (IlengthV PSpace), the following approach is used to
give appropriate weighting to the contribution of the two dimensions of the viewport. First,
convert lengthV PSpace into viewport pixel units using the SVG user agent's standard conversion
factor from pixelsto to real world units (e.g., millimeters) to yield lengthV PPixels. Calculate the
distance from (0,0) and (vpWidthinPixels,vpHeightInPixels) in viewport space using the formula:
vpDiagL engthV PPixels=sgrt(vpWidthinPixels** 2 + vpHeightlnPixels** 2). Using the inverse of
the current transformation matrix, determine the pointsin user space (P1x,P1y) and (P2x,P2y)
which correspond to the points (0,0) and (vpWidthinPixels,vpHeightinPixels) in viewport space.
Calculate the distance from (P1x,Ply) and (P2x,P2y) in user space using the formula:

vpDiagL engthUser Space=sgrt((P2x-P1x)** 2 + (P2y-Ply)**2)). Then, convert the original
viewport-relative length into alength in user space using the formula: lengthUserSpace =
lengthVPPixels* (vpDiagL engthUserSpace/vpDiaglL engthV PPixels).

If aviewport-relative percentage value is given, then use the same method as above, except
calculate lengthV PPixel s as lengthV PPixel s=percentageV alue* sgrt(vpWidthPixels** 2 +
vpHeightPixels** 2)/sgrt(2).

Any values expressed as fractions or percentages of the current object bounding box are mapped to
corresponding values in user space as follows:

file:///d|/public/svgspec/samples/viewport-transform.xml

« For any x-coordinate value or width value, determine the minimum and maximum x-coordinatesin
user space for the object bounding box (bboxXMinUserSpace and bboxX MaxUser Space,
respectively). An x-coordinate value is converted into a coordinate in user space using the formula
bboxX MinUserSpacet+percentageV al ue* (bboxX MaxUser Space-bboxX MinUserSpace) and a
width value is converted into alength in user space using the formula
percentageV a ue* (bboxX M axUser Space-bbox X MinUserSpace).

« For any y-coordinate value or width value, determine the minimum and maximum y-coordinates in
user space for the object bounding box (bboxY MinUserSpace and bboxY MaxUser Space,
respectively). A y-coordinate value is converted into a coordinate in user space using the formula
bboxY MinUserSpace+percentageV a ue* (bboxY MaxUser Space-bboxY MinUserSpace) and a
height value is converted into a length in user space using the formula
percentageV a ue* (bboxY MaxUser Space-bboxY MinUser Space).

« For any other length value expressed as a fraction or percentage of the current object bounding
box, determine the minimum and maximum x and y coordinates in user space for the object
bounding box (bboxXMinUserSpace, bboxX M axUserSpace, bboxY MinUserSpace and
bboxY MaxUserSpace), cal cul ate bboxWidth=bboxX M axUser Space-bboxX MinUser Space and
bboxHeight=bboxY MaxUser Space-bboxY MinUserSpace, and then map the fraction or percentage
of the current object bounding box to alength in user space using the formula
percentageV a ue* sgrt(bboxWidth** 2 + bboxHeight* * 2)/sgrt(2).

7.13 DOM interfaces

The following interfaces are defined below: SV GPoint, SVGMatrix, SVGTransformList, SVGTransform,
SV GPreserveAspectRatio, SVGFitToViewBox, SVGTransformable.

Interface SVGPoint

Many of the SVG DOM interfaces refer to objects of class SVGPoint. An SVGPoint is an (x,y) coordinate
pair. When used in matrix operations, an SV GPoint is treated as a vector of the form:
[X]

[y]
[1]

IDL Definition

i nterface SVGPoint {
attribute SVG@.ength x;
attribute SVG@.ength y;

SVGPoint matrixTransform (in SVGvatrix matrix)
rai ses(SVGException);

Attributes
SVGLength x
The x coordinate.
SVGLengthy

They coordinate.

Methods

matrixTransform

Appl

ies a 2x3 matrix transformation on this SV GPoint object and returns a new,

transformed SV GPoint object:
newpoint = matrix * thispoint

Parameters

Retu

in SVGMatrix matrix The matrix which isto be applied to this SV GPoint object.
rn value
SVGPoint A new SVGPoint object.

Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter matrix is of the
wrong type.

Interface SVGMatrix

Many of SVG's graphics operations utilize 2x3 matrices of the form:

[a ¢ €]
[bdf]

which, when expanded into a 3x3 matrix for the purposes of matrix arithmetic, become:

[a c €]
[bdf]
[0 0 1]

IDL Definition

interface SVG@vatri x {

SVGMWat ri x
SVGWAt ri x
SVGVat ri x
SVGVat ri x
SVGWVat ri x
SVGWAt ri x
SVGVat ri x

SVGWVat ri x
SVGVat ri x

attribute fl oat
attribute fl oat
attribute float
attribute fl oat
attribute SVGength e;
attribute SVGength f;

eeze

)

multiply (in SV@Gvatrix secondMatrix)
rai ses(SVGException);
inverse ()
rai ses(SVGException);
translate (in SVGength x, in SVGength vy)
rai ses(SVGException);
scale (in float scal eFactor)
rai ses(SVCGException);
scal eNonUniform (in float scal eFactorX, in float scal eFactorY)
rai ses(SVGException);
rotate (in SVGAngle angle)
rai ses(SVGException);
rotateFronVector (in SVG@ength x, in SVGength y)
rai ses(SVGException);
flipxX ();
flipy (-);

SVGvatri x skewX (in SVGAngle angle)
rai ses(SVGException);

SVGvatri x skewY (in SVGAngl e angle)
rai ses(SVGException);

Attributes
float a
The a component of the matrix.
float b
The b component of the matrix.
float c
The c component of the matrix.
float d
The d component of the matrix.
SVGLength e
The e component of the matrix.
SVGLength f
The f component of the matrix.
Methods
multiply

Performs matrix multiplication. This matrix is post-multiplied by another matrix, returning
the resulting new matrix.

Parameters

in SVGMatrix secondMatrix The matrix which is post-multiplied to this matrix.
Return value

SVGMatrix The resulting matrix.
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter secondMatrix is
of the wrong type.

inverse
Returns the inverse matrix.
No Parameters
Return value
SVGMatrix Theinverse matrix.
Exceptions

SVGException SVG_MATRIX_NOT _INVERTABLE: Raised if thismatrix is
not invertable.

tranglate
Post-multiplies a trandation transformation on the current matrix and returns the resulting

scae

matrix.
Parameters

in SVGLength x The distance to translate along the X axis.
in SVGLengthy The distance to translate along the Y axis.

Return value
SVGMatrix The resulting matrix.
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if one of the parametersiis of
the wrong type.

Post-multiplies a uniform scale transformation on the current matrix and returns the
resulting matrix.

Parameters

in float scaleFactor Scale factor inboth X and Y.
Return value

SVGMatrix The resulting matrix.
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if one of the parametersiis of
the wrong type.

scaleNonUniform

rotate

Post-multiplies a non-uniform scale transformation on the current matrix and returns the
resulting matrix.

Parameters

in float scaleFactorX Scale factor in X.
in float scaleFactorY Scalefactorin.

Return value
SVGMatrix The resulting matrix.
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if one of the parametersiis of
the wrong type.

Post-multiplies arotation transformation on the current matrix and returns the resulting
matrix.

Parameters

in SVGAngle angle Rotation angle.
Return value

SVGMatrix The resulting matrix.

Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if one of the parametersiis of
the wrong type.

rotateFromV ector

flipX

flipy

skewX

Post-multiplies arotation transformation on the current matrix and returns the resulting
matrixX. The rotation angle is determined by taking (+/-) atan(y/x). The direction of the
vector (X,y) determines whether the positive or negative angle value is used.

Parameters

in SVGLength x The X coordinate of the vector (x,y). Must not be zero.
in SVGLengthy TheY coordinate of the vector (x,y). Must not be zero.

Return value
SVGMatrix The resulting matrix.
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if one of the parametersiis of
the wrong type.

SVG_INVALID_VALUE_ERR: Raised if one of the parameters
has an invalid value.

Post-multiplies the transformation [-1 0 0 1 0 O] and returns the resulting matrix.
No Parameters
Return value

SVGMatrix The resulting matrix.
No Exceptions

Post-multiplies the transformation [1 0 0 -1 0 0] and returns the resulting matrix.
No Parameters
Return value

SVGMatrix The resulting matrix.
No Exceptions

Post-multiplies a skewX transformation on the current matrix and returns the resulting
matrix.

Parameters

in SVGAnNgle angle Skew angle.
Return value

SVGMatrix The resulting matrix.
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if one of the parametersis of
the wrong type.

skewY

Post-multiplies a skewY transformation on the current matrix and returns the resulting
matrix.

Parameters

in SVGAngle angle Skew angle.
Return value

SVGMatrix The resulting matrix.
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if one of the parametersiis of
the wrong type.

Interface SVGTransformList

SVGTransformList maintains an ordered list of SV GTransform objects. The SVGTransformList and
SVGTransform interfaces correspond to the various attributes which specify a set of transformations, such
as the transform attribute which is available for many of SVG's elements.

The various methods inherited from SVGList, which are defined in SVGList to accept parameters and
return values of type Object, must receive parameters of type SVGTransform and return values of type
SVGTransform.

| DL Definition

interface SVGIransforniist : SVAist {
SVGTIransform creat eSVGIransfornFromvatrix (in SVGWAtrix matrix)
rai ses(SVCGException);
SVGTransform consolidate ();

b

Methods
createSV GTransformFromM atrix

Creates an SV GTransform object which isinitialized to transform of type
SVG_TRANSFORM_MATRIX and whose values are the given matrix.

Parameters

in SVGMatrix matrix The matrix which defines the transformation.
Return value

SVGTransform The returned SV GTransform object.
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if parameter newltem isthe
wrong type of object for the given list.

consolidate

Consolidates the list of separate SV GTransform objects by multiplying the equivalent
transformation matrices together to result in alist consisting of asingle SV GTransform
object of type SVG_TRANSFORM_MATRIX.

No Parameters
Return value

SVGTransform The resulting SV GTransform object which becomes singleitemin
thelist. If the list was empty, then avalue of null is returned.

No Exceptions

Interface SVGTransform

SVGTransform is the interface for one of the component transformations within a SV GTransformList;
thus, a SV GTransform object corresponds to single component (e.g., "scale(..)" or "matrix(...)") within a
transform attribute specification.

| DL Definition

i nterface SVGIransform {
/1 Transform Types
constant unsigned short SVG TRANSFORM UNKNOWN
constant unsigned short SVG TRANSFORM MATRI X
constant unsigned short SVG TRANSFORM TRANSLATE
constant unsigned short SVG TRANSFORM SCALE
constant unsigned short SVG TRANSFORM ROTATE
constant unsigned short SVG TRANSFORM SKEWK
constant unsigned short SVG TRANSFORM SKEWY

(TR TR TR TR T
sordNMRO

readonly attribute unsigned short type;
readonly attribute SVGvatrix nmatri x;
readonly attri bute SVGAngl e angl e;

void setMatrix (in SvVGvatrix matrix)
rai ses(SVGException);

void setTranslate (in SVGength tx, in SVGength ty)
rai ses(SVGException);

void setScale (in SVGNunber sx, in SVG\unber sy)
rai ses(SVCGException);

void setRotate (in SVGAngle angle)
rai ses(SVGException);

voi d set SkewX (in SVGAngle angle)
rai ses(SVGException);

voi d set SkewY (in SVGAngl e angle)
rai ses(SVGException);

Definition group Transform Types
Defined constants

SVG_TRANSFORM_UNKNOWN The unit type is not one of predefined types. Itis
invalid to attempt to define a new value of thistype
or to attempt to switch an existing value to this
type.

SVG_TRANSFORM_MATRIX A "matrix(...)" transformation.

SVG_TRANSFORM_TRANSLATE A "trandate(...)" transformation.

SVG_TRANSFORM_SCALE A "scale(...)" transformation.
SVG_TRANSFORM_ROTATE A "rotate(...)" transformation.
SVG_TRANSFORM_SKEWX A "skewX(...)" transformation.
SVG_TRANSFORM_SKEWY A "skewY (...)" transformation.
Attributes

readonly unsigned short type
The type of the value as specified by one of the constants specified above.

readonly SV GMatrix matrix
The matrix that represents this transformation.
For SVG_TRANSFORM_MATRIX, the matrix containsthe a, b, ¢, d, e, f values supplied
by the user.
For SVG_TRANSFORM_TRANSLATE, e and f represents the translation amounts
(a=1,b=0,c=0,d=1).
For SVG_TRANSFORM_SCALE, aand d represents the scale amounts
(b=0,c=0,e=0,f=0).
For SYG_TRANSFORM_ROTATE, SVG_TRANSFORM_SKEWX and
SVG_TRANSFORM_SKEWY, a, b, c and d represent the matrix which will result in the
given transformation (e=0,f=0).

readonly SVGAnNgle angle
A convenience attribute for SVG_TRANSFORM _ROTATE,
SVG_TRANSFORM_SKEWX and SVG_TRANSFORM_SKEWY. It holds the angle that
was specified.
For SVG_TRANSFORM_MATRIX, SVG_TRANSFORM_TRANSLATE and
SVG_TRANSFORM_SCALE, angle will be zero.

Methods

setMatrix
Sets the transform type to SVG_TRANSFORM_MATRIX, with parameter matrix defining
the new transformation.
Parameters

in SVGMatrix matrix The new matrix for the transformation.
No Return Value
Exceptions
SVGException SVG_WRONG_TYPE_ERR: Raised if the parameter is of the
wrong type.
setTrandlate

Sets the transform type to SYG_TRANSFORM_TRANSLATE, with parameters tx and ty
defining the trangl ation amounts.

Parameters

in SVGLength tx The translation amount in X.
in SVGLengthty Thetrandation amountinY.

No Return Value

Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if the parameter is of the
wrong type.

setScae

Sets the transform type to SVG_TRANSFORM _SCALE, with parameters sx and sy
defining the scale amounts.

Parameters

in SVGNumber sx The scale factor in X.
in SVGNumber sy Thescaefactorin.

No Return Vaue
Exceptions
SVGException SVG_WRONG_TYPE_ERR: Raised if the parameter is of the
wrong type.
setRotate

Sets the transform type to SYG_TRANSFORM_ROTATE, with parameter angle defining
the rotation angle.

Parameters
in SVGANgle angle Therotation angle.

No Return Value
Exceptions
SVGException SVG_WRONG_TYPE _ERR: Raised if the parameter is of the
wrong type.
setSkewX

Setsthe transform type to SVG_TRANSFORM_SKEWX, with parameter angle defining
the amount of skew.

Parameters
in SVGAnNgle angle The skew angle.

No Return Value
Exceptions
SVGException SVG_WRONG_TYPE_ERR: Raised if the parameter is of the
wrong type.
setSkewY

Sets the transform type to SVG_TRANSFORM_SKEWY , with parameter angle defining
the amount of skew.

Parameters
in SVGAnNgle angle The skew angle.

No Return Value
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if the parameter is of the

wrong type.

Interface SVGPreserveAspectRatio

The SV GPreserveAspectRatio interface corresponds to the preserveAspectRatio attribute, which is

available for some of SVG's elements.

| DL Definition

interface SVGPreserveAspectRatio {
/1 Alignnment Types
constant unsigned short SVG PRESERVEASPECTRATI O _NONE

constant unsigned short SVG PRESERVEASPECTRATI O_XM NYM N
constant unsigned short SVG PRESERVEASPECTRATI O XM DYM N
constant unsigned short SVG PRESERVEASPECTRATI O XMAXYM N
constant unsigned short SVG PRESERVEASPECTRATI O XM NYM D
constant unsigned short SVG PRESERVEASPECTRATI O XM DYM D
constant unsigned short SVG PRESERVEASPECTRATI O_XMAXYM D
constant unsigned short SVG PRESERVEASPECTRATI O XM NYMAX
constant unsigned short SVG _PRESERVEASPECTRATI O_XM DYMAX
constant unsigned short SVG PRESERVEASPECTRATI O _XMAXYMAX

/1l Meet-or-slice Types
const ant unsigned short SVG MEETORSLI CE_MEET
constant unsigned short SVG MEETORSLI CE_SLI CE

0;
1

attribute unsigned short align;
attribute unsigned short neetOrSlice;

Definition group Alignment Types
Defined constants
SVG_PRESERVEASPECTRATIO_NONE

SVG_PRESERVEASPECTRATIO_XMINYMIN
SVG_PRESERVEASPECTRATIO_XMIDYMIN
SVG_PRESERVEASPECTRATIO_XMAXYMIN
SVG_PRESERVEASPECTRATIO_XMINYMID
SVG_PRESERVEASPECTRATIO_XMIDYMID
SVG_PRESERVEASPECTRATIO_XMAXYMID
SVG_PRESERVEASPECTRATIO_XMINYMAX

SVG_PRESERVEASPECTRATIO_XMIDYMAX

LONOORWONEQ

Corresponds to value 'none' for
attribute preserveAspectRatio.

Corresponds to value 'xMinY Min'
for attribute preserveAspectRatio.
Corresponds to value 'xMidY Min'
for attribute preserveAspectRatio.
Corresponds to value 'xMaxY Min'
for attribute preserveAspectRatio.
Corresponds to value 'xMinY Mid'
for attribute preserveAspectRatio.
Corresponds to value 'xMidY Mid'
for attribute preserveAspectRatio.
Corresponds to value 'xMaxY Mid'
for attribute preserveAspectRatio.

Corresponds to value 'xMinY Max'
for attribute preserveA spectRatio.

Corresponds to value 'xMidY Max'
for attribute preserveA spectRatio.

SVG_PRESERVEASPECTRATIO XMAXYMAX Correspondsto value 'xMaxY Max'
for attribute preserveA spectRatio.

Definition group Meet-or-dlice Types
Defined constants

SVG_MEETORSLICE_MEET Corresponds to value 'meet’ for attribute
preserveAspectRatio.

SVG_MEETORSLICE_SLICE Correspondsto value 'dlice' for attribute
preserveAspectRatio.

Attributes
unsigned short align
The type of the alignment value as specified by one of the constants specified above.
unsigned short meetOrSlice
The type of the meet-or-dlice value as specified by one of the constants specified above.

Interface SVGFitToViewBox

Interface SVGFitToViewBox defines DOM attributes that apply to elements which have XML attributes
viewBox and preserveAspectRatio.

| DL Definition

interface SVGFit ToVi ewBox {
attri bute SVGRect vi ewBox;
attribute SVGPreserveAspectRati o preserveAspectRati o;

Attributes
SV GRect viewBox
Corresponds to attribute viewBox on the given element.
SV GPreserveAspectRatio preserveAspectRatio
Corresponds to attribute preserveAspectRatio on the given element.

Interface SVGTransformable

Interface SV GTransformable contains properties and methods that apply to all elements which have
attribute transform.

IDL Definition
i nterface SVGIransformable {
readonly attribute SVGEl enent near est Vi ewport El enent ;
readonly attribute SVGEl enent farthest Vi ewport El enent ;

attribute SVGIransfornlist transform

SVGRect getBBox ();

SVGvatrix getCTM ();

SVGvatri x get ScreenCTM ();

SVGVat ri x get Transf or mioEl ement (in SVCEl enent el enent)
rai ses(SVGException);

Attributes
readonly SV GElement nearestViewportElement

The element which established the current viewport. Often, the nearest ancestor 'svg’
element. Null if thisisthe given element is the outermost 'svg' element.

readonly SV GElement farthestViewportElement

The farthest ancestor 'svg' element. Null if thisis the given element is the outermost 'svg'
element.

SVGTransformList transform
Corresponds to attribute transform on the given element.
Methods
getBBox

Returns the tight bounding box in current user space (i.e., after application of the transform
attribute) on the geometry of all contained graphics elements, exclusive of stroke-width
and filter effects.

No Parameters
Return value

SVGRect An SV GRect object that defines the bounding box.

No Exceptions
getCTM

Returns the transformation matrix from current user units (i.e., after application of the
transform attribute) to the viewport coordinate system for the nearestViewportElement.

No Parameters
Return value

SVGMatrix An SVGMatrix object that defines the CTM.
No Exceptions
getScreenCTM

Returns the transformation matrix from current user units (i.e., after application of the
transform attribute) to the parent user agent's notice of a"pixel”. For display devices,
ideally this represents a physical screen pixel. For other devices or environments where
physical pixel sizes are not know, then an algorithm similar to the CSS2 definition of a
"pixel" can be used instead.

No Parameters
Return value

SVGMatrix An SVGMatrix object that defines the given transformation matrix.
No Exceptions

getTransformToElement

Returns the transformation matrix from the user coordinate system on the current element
(after application of the transform attribute) to the user coordinate system on element (after
application of its transform attribute).

Parameters

in SVGElement element The target element.
Return value

SVGMatrix An SVGMatrix object that defines the transformation.
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if the target element is of an
invalid type.

SVG_MATRIX_NOT_INVERTABLE: Raised if the currently
defined transformation matrices make it impossible to compute the
given matrix (e.g., because one of the transformations is singular).

previous next contents properties index

previous next contents properties index

8 Paths

Contents

o 8.1 Introduction

¢ 8.2 The 'path' element

« 8.3 Path Data
0 8.3.1 Genera information about path data
o 8.3.2 The "moveto” commands

o 8.3.3 The "closepath" command

o 8.3.4 The"lineto" commands

o 8.3.5 The curve commands

o 8.3.6 The grammar for path data
» 8.4 Distance along a path
o 85DOM interfaces

8.1 Introduction

Paths represent the outline of a shape which can be filled, stroked, (see Filling, Stroking and Paint Servers) used
asaclipping path (see Clipping, Masking and Compositing), or for any combination of the three.

A path is described using the concept of a current point. In an analogy with drawing on paper, the current point
can be thought of as the location of the pen. The position of the pen can be changed, and the outline of a shape
(open or closed) can be traced by dragging the pen in either straight lines or curves.

Paths represent an outline of an object which is defined in terms of moveto (set a new current point), lineto (draw
astraight line), curveto (draw a curve using a cubic bezier), arc (elliptical or circular arc) and closepath (close
the current shape by drawing aline to the last moveto) elements. Compound paths (i.e., a path with subpaths,
each consisting of a single moveto followed by one or more line or curve operations) are possible to allow effects
such as "donut holes" in objects.

A pathis defined in SV G using the 'path’ element.

8.2 The 'path' element

<IENTITY % pat hExt "" >
<! ELEMENT path (%descTitle;, (ani mate| set| ani mat eMbti on| ani mat eCol or | ani mat eTr ansf orm

%geExt ; Ypat hExt;)*) >

<! ATTLI ST path
st dAttrs;
% angSpaceAttrs;
class % asslList; #l MPLI ED
transform % ransfornlist; #l MPLI ED
%@r aphi csEl ement Event s;
% estAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
d %Pat hDat a; #REQUI RED
| engt h %\unber; #l MPLI ED
%St yl abl eSVG Styl eAttribute;

%ExchangeSVG Fi |l | StrokeAttrs;
%ExchangeSVG G aphi csAttrs;
%ExchangeSVG Marker Attrs; >

Attribute definitions;
d = "path data"

The definition of the outline of a shape. See Path data.
Animatable: yes.

length = "<number>"

The author's computation of the total length of the path, in user units. Thisvalue is used to calibrate the
user agent's own distance-along-a-path calculations with that of the author. The user agent will scale al
distance-along-a-path computations by the ratio of length to the user agent's own computed value for
total path length. length potentially affects calculations for text on a path, motion animation and various
stroke operations.

Animatable: yes. Path data animation is only possible when each path data specification within an
animation specification has exactly the same list of path data commands as the d attribute. If an
animation is specified and the list of path data commands is not the same, then the animation
specification isin error (see Error Processing). The animation engine interpol ates each parameter to each
path data command separately based on the attributes to the given animation element. Any flags/booleans
are interpolated as fractions between zero and one, with any non-zero value considered to be a value of
one/true.

Attributes defined € sewhere:

YostdAttrs;, %olangSpaceAttrs;, transform, Yographi csElementEvents;, %testAttrs;,
%StylableSV G-StyleAttribute;.

8.3 Path data

8.3.1 General information about path data

A path is defined by including a'path’ element which contains ad=" (path data)" attribute, where thed
attribute contains the moveto, line, curve (both cubic and quadratic beziers), arc and closepath instructions. The
following example specifies a path in the shape of atriangle. (The M indicates a moveto, the L's indicate lineto's,
and the z indicates a closepath:

<?xm version="1.0" standal one="yes"?>
<svg w dt h="4i n" hei ght="3i n"
xmns = "http://ww. w3. org/ 2000/ svg- 20000303- st yl abl e' >

<path d="M 100 100 L 140 100 L 120 140 z"/>
</ svg>

Download this example

Path data values can contain newline characters and thus can be broken up into multiple linesto improve
readability. Because of line length limitations with certain related tools, it is recommended that SV G generators
split long path data strings across multiple lines, with each line not exceeding 255 characters. Also note that
newline characters are only allowed at certain places within a path data value.

The syntax of path datais very abbreviated in order to allow for minimal file size and efficient downloads, since
many SV G fileswill be dominated by their path data. Some of the ways that SV G attempts to minimize the size
of path data are as follows:

« All instructions are expressed as one character (e.g., amoveto is expressed as an M)

« Superfluous white space and separators such as commas can be eliminated (e.g., "M 100 100 L 200 200"
contains unnecessary spaces and could be expressed more compactly as "M 100 100L200 200")

« The command letter can be eliminated on subsequent commands if the same command is used multiple
timesin arow (e.g., you can drop the second "L" in "M 100 200 L 200 100 L -100 -200" and use "M 100
200 L 200 100 -100 -200" instead)

» Relative versions of all commands are available (upper case means absolute coordinates, lower case
means relative coordinates)

« Alternate forms of lineto are available to optimize the special cases of horizontal and vertical lines
(absolute and relative)

« Alternate forms of curve are available to optimize the special cases where some of the control points on
the current segment can be determined automatically from the control points on the previous segment

The path data syntax is a prefix notation (i.e., commands followed by parameters). The only allowable decimal
pointisaperiod (".") and no other delimiter characters are allowed. (For example, the following isan invalid
numeric value in a path data stream: "13,000.56". Instead, say: "13000.56".)
In the tables below, the following notation is used:

 (): grouping of parameters

« +: 1 0or more of the given parameter(s) is required

The following sections list the commands.

8.3.2 The "moveto" commands

The "moveto" commands (M or m) establish a new current point. The effect isasif the "pen" were lifted and
moved to a new location. A path data segment must begin with either one of the "moveto" commands or one of
the "arc" commands. Subsequent "moveto” commands (i.e., when the "moveto” is not the first command)
represent the start of a new subpath:

Command Name | Parameters Description

Start a new sub-path at the given (x,y) coordinate. M (uppercase)
indicates that absolute coordinates will follow; m (lowercase)
indicates that relative coordinates will follow. If arelative moveto
moveto | (X y)+ (m) appears as the first element of the path, then it istreated asa
pair of absolute coordinates. If amoveto isfollowed by multiple
pairs of coordinates, the subsequent pairs are treated as implicit
lineto commands.

M (absolute)
m (relative)

file:///d|/public/svgspec/samples/path01.xml

8.3.3 The "closepath” command

The "closepath” (Z or z) causes an automatic straight line to be drawn from the current point to theinitial point
of the current subpath. "Closepath” differsin behavior from what happens when "manually” closing a subpath
viaa"lineto" command in how 'stroke-lingjoin’ and 'stroke-linecap’ are implemented. With "closepath”, the end
of the final segment of the subpath is"joined" with the start of the initial segment of the subpath using the
current value of 'stroke-lingjoin' . If you instead "manually" close the subpath viaa"lineto" command, the start
of the first segment and the end of the last segment are not joined but instead are each capped using the current

value of 'stroke-linecap'

Command Name | Parameters Description

Close the current subpath by drawing a straight line from the
closepath | (none) current point to current subpath's most recent starting point
(usually, the most recent moveto point).

Zor
z

8.3.4 The "lineto" commands

The various "lineto" commands draw straight lines from the current point to a new point:

Command Name Parameters Description

Draw aline from the current point to the given (x,y)
coordinate which becomes the new current point. L
(uppercase) indicates that absolute coordinates will follow;
lineto (xy)+ | (lowercase) indicates that relative coordinates will
follow. A number of coordinates pairs may be specified to
draw apolyline. At the end of the command, the new
current point is set to the final set of coordinates provided.

L (absolute)
| (relative)

Draws a horizontal line from the current point (cpx, cpy) to
(%, cpy). H (uppercase) indicates that absolute coordinates
will follow; h (lowercase) indicates that relative

horizontal lineto | x+ coordinates will follow. Multiple x values can be provided
(although usually this doesn't make sense). At the end of
the command, the new current point becomes (X, cpy) for
the final value of x.

H (absolute)
h (relative)

Draws avertical line from the current point (cpx, cpy) to
(cpx, y). V (uppercase) indicates that absolute coordinates
will follow; v (lowercase) indicates that relative
coordinates will follow. Multiple y values can be provided
(although usually this doesn't make sense). At the end of
the command, the new current point becomes (cpx, y) for
thefinal value of y.

V (absolute) o
v (relative) vertical lineto y+

8.3.5 The curve commands

These three groups of commands that draw curves:

« Cubic bezier commands (C, ¢, Sand s). A cubic bezier segment is defined by a start point, an end point,
and two control points.

« Quadratic bezier commands (Q, g, T and T). A quadratic bezier segment is defined by a start point, an

end point, and one control point.

« Elliptical arc commands (A and a). An elliptical arc segment draws a segment of an ellipse.

The cubic bezier commands are as follows:

Command Name

Parameters

Description

C (absolute)

c (relative) | CUVE

(x1lylx2y2xy)+

Draws a cubic bezier curve from the
current point to (x,y) using (x1,y1) asthe
control point at the beginning of the curve
and (x2,y2) asthe control point at the end
of the curve. C (uppercase) indicates that
absolute coordinates will follow; ¢
(lowercase) indicates that relative
coordinates will follow. Multiple sets of
coordinates may be specified to draw a
polybezier. At the end of the command, the
new current point becomes the fina (x,y)
coordinate pair used in the polybezier.

S (absolute)

s (relative) shorthand/smooth curveto

(x2y2xy)+

Draws a cubic bezier curve from the
current point to (x,y). Thefirst control
point is assumed to be the reflection of the
second control point on the previous
command relative to the current point. (If
there is no previous command or if the
previous command wasnot an C, ¢, Sor s,
assume the first control point is coincident
with the current point.) (x2,y2) isthe
second control point (i.e., the control point
at the end of the curve). S (uppercase)
indicates that absolute coordinates will
follow; s (lowercase) indicates that relative
coordinates will follow. Multiple sets of
coordinates may be specified to draw a
polybezier. At the end of the command, the
new current point becomes the final (x,y)
coordinate pair used in the polybezier.

The quadratic bezier commands are as follows:

Command Name

Parameters

Description

Q (absolute)
g (relative)

quadratic bezier curveto

(xX1lylxy)+

Draws a quadratic bezier curve
from the current point to (x,y)
using (x1,y1) asthe control
point. Q (uppercase) indicates
that absolute coordinates will
follow; g (lowercase) indicates
that relative coordinates will
follow. Multiple sets of
coordinates may be specified to
draw a polybezier. At the end of
the command, the new current
point becomes the final (x,y)
coordinate pair used in the
polybezier.

T (absolute)
t (relative)

Shorthand/smooth quadratic bezier curveto

Draws a quadratic bezier curve
from the current point to (x,y).
The control point is assumed to
be the reflection of the control
point on the previous command
relative to the current point. (If
there is no previous command
or if the previous command was
notan Q, q, T or t, assume the
control point is coincident with
the current point.) T (uppercase)
indicates that absolute
coordinates will follow; t
(lowercase) indicates that
relative coordinates will follow.
At the end of the command, the
new current point becomes the
final (x,y) coordinate pair used
in the polybezier.

The elliptical arc commands are as follows:

Command

Name

Parameters

Description

A (absolute)
a (relative)

elliptical arc

(rx ry x-axis-rotation large-arc-flag
sweep-flag x y)+

Draws an elliptical arc from the current
point to (X, y). The size and orientation
of the éllipseis defined two radii (rx,
ry) and an x-axis-rotation, which
indicates how the ellipse asawholeis
rotated relative to the current
coordinate system. The center (cx, cy)
of the elipseis calculated
automatically to satisfy the constraints
imposed by the other parameters.

lar ge-ar c-flag and sweep-flag
contribute to the automatic calculations
and help determine how the arcis
drawn.

The elliptical arc command draws a section of an ellipse which meets the following constraints:
« thearc starts at the current point
« thearc endsat point (x, y)
« theéllipse hasthetwo radii (rx, ry)

» the X-axisof the ellipse isrotated by x-axis-rotation relative to the X-axis of the current coordinate
system.

For most situations, there are actually four different arcs (two different ellipses, each with two different arc
sweeps) that satisfy these constraints: (Pictures will be forthcoming in afuture version of the spec)
lar ge-ar c-flag and sweep-flag indicate which one of the four arcs are drawn, as follows:

« Of the four candidate arc sweeps, two will represent an arc sweep of greater than or equal to 180 degrees
(the "large-arc"), and two will represent an arc sweep of less than or equal to 180 degrees (the
"small-arc"). If large-arc-flag is'1’, then one of the two larger arc sweeps will be chosen; otherwise, if
large-arc-flag is'0', one of the smaller arc sweeps will be chosen,

« If sweep-flagis'l', then the arc will be drawn in a"positive-angle" direction (i.e., the ellipse formula
x=cx+rx* cos(theta) and y=cy+ry* sin(theta) is evaluated such that theta starts at an angle corresponding
to the current point and increases positively until the arc reaches (x,y)). A value of O causes the arc to be
drawn in a"negative-angle" direction (i.e., theta starts at an angle value corresponding to the current
point and decreases until the arc reaches (x,y)).

(We need examplesto illustrate all of this! Here is one for the moment. Suppose you have a circle with center
(5,5) and radius 2 and you wish to draw an arc from O degrees to 90 degrees. Then one way to achieve this
wouldbeM 7,5 A 2,2 0 0 1 5, 7.Inthisexample, you move to the "0 degree" location on the circle,
whichis (7,5), since the center is at (5,5) and the circle has radius 2. Since we have circle, the two radii are the
same, and in this example both are equal to 2. Since our sweep is 90 degrees, which isless than 180, we set
large-arc-flag to 0. We want to draw the sweep in a positive angle direction, so we set sweep-flag to 1. Since we
want to draw the arc to the point which is at the 90 degree location of the circle, we set (x,y) to (5,7).)

8.3.6 The grammar for path data

The following notation is used in the BNF description of the grammar for path data:
e *:00r more
e +:10r more
e« 200r1

(): grouping

|: separates alternatives

« double quotes surround literals

The following isthe BNF for SVG paths.

svg- pat h:
wsp* subpat hs? wsp*

subpat hs
subpat h
| subpat h subpat hs

subpat h:
nmovet o subpat h-el ement s?

subpat h- el enent s:
subpat h- el emrent
| subpat h-el emrent wsp* subpat h-el emrents

subpat h- el enent :

cl osepath

lineto

hori zontal -lineto
vertical-lineto
curveto

guadr ati c- bezi er-curveto
snoot h- quadr ati c- bezi er-curveto

I
I
I
I
| snoot h-curveto
|
I
| elliptical-arc

("M | "nt') wsp* noveto-argunent-sequence

novet o- ar gunment - sequence
coordi nat e-pai r
| coordinate-pair coma-wsp? |ineto-argument-sequence

cl osepat h
("z' | "z")
l'i neto:
("L" | "I") wsp* lineto-argunent-sequence

| i net o- ar gunent - sequence
coor di nat e- pai r
| coordinate-pair coma-wsp? |ineto-argunent-sequence

hori zontal -1ineto

("H | "h") wsp* horizontal -1ineto-argunent-sequence
hori zontal -1i net o- ar gunent - sequence:

coordi nate

| coordinate comma-wsp? horizontal -1ineto-argunment-sequence
vertical-lineto

("V'] "v") wsp* vertical-lineto-argunent-sequence
vertical -1ineto-argument - sequence

coordi nate

| coordinate comma-wsp? vertical -1ineto-argument-sequence
curveto:

("C" | "c") wsp* curveto-argunent-sequence

curvet o- ar gunent - sequence
cur vet o- ar gumrent
| curveto-argument comma-wsp? curveto-ar gunent - sequence

curvet o- argunent:
coordi nat e-pair conma-wsp? coordi nat e-pair comma-wsp? coordi nat e-pair

snoot h- cur vet o:
("S" | "s") wsp* snooth-curveto-argument - sequence

snoot h- cur vet o- ar gunent - sequence
smoot h- cur vet o- ar gunent
| smoot h-curvet o-argunment conmma-wsp? snmoot h- cur vet o- ar gunent - sequence

snoot h- cur vet o- ar gunent :
coordi nat e- pai r conma-wsp? coordi nat e-pair

guadr ati c- bezi er-curveto:
("Q | "q") wsp* quadratic-bezier-curveto-argunent-sequence

guadr ati c- bezi er - curvet o- ar gunent - sequence:
quadr ati c- bezi er - cur vet o- ar gunent
| quadratic-bezier-curveto-argunent conma-wsp?
quadr ati c- bezi er - curvet o- ar gunent - sequence

qguadr ati c- bezi er-curvet o-argunent :
coordi nat e-pair coma-wsp? coordi nate-pair

snoot h- quadr at i c- bezi er - cur vet o:

("7 | "t") wsp* snooth-quadratic-bezier-curveto-argument-sequence

snoot h- quadr ati c- bezi er - curvet o- ar gunent - sequence
coordi nat e- pai r
| coordinate-pair comma-wsp? snoot h- quadrati c-bezi er - curvet o- ar gunent - sequence

elliptical-arc:
("A" | "a") wsp* elliptical-arc-argument-sequence

el liptical -arc-argunent - sequence
el l'i ptical -arc-argunent
| elliptical-arc-argunent conmma-wsp? elliptical-arc-argunent-sequence

el liptical-arc-argunent:
nonnegat i ve- nunber comma-wsp? nonnegati ve- nunber coma-wsp?
nunber comma-wsp? flag commua-wsp? flag comma-wsp? coordi nate-pair

coordi nat e-pair:
coordi nate comma-wsp? coordi nate

coordi nat e:
nunber

nonnegat i ve- nunber:
i nt eger - const ant
| floating-point-constant

nunber :
si gn? i nteger-constant
| sign? floating-point-constant

flag
NEET.
comma- Wsp:
(wsp+ comma? wsp*) | (comma wsp*)
comma:

"o
’

i nt eger-constant:
di git-sequence

fl oati ng- poi nt-constant:
fractional - const ant exponent ?
| digit-sequence exponent

fractional -constant:
di git-sequence? "." digit-sequence
| digit-sequence "."

exponent :
("e" | "E") sign? digit-sequence

sign:

g o
di gi t - sequence

digit

| digit digit-sequence
digit:

"o" | "a" | "2" | "3" | "4" | "5" | "e" | "7 | "8" | "9"
wsp:
(#x20 | #x9 | #xD | #xA)

The processing of the BNF must consume as much of a given BNF production as possible, stopping at the point
when a character is encountered which no longer satisfies the production. Thus, in the string "M 100-200", the
first coordinate for the "moveto” consumes the characters " 100" and stops upon encountering the minus sign
because the minus sign cannot follow a digit in the production of a"coordinate". The result is that the first
coordinate will be "100" and the second coordinate will be "-200".

Similarly, for the string "M 0.6.5", the first coordinate of the "moveto” consumes the characters "0.6" and stops
upon encountering the second decimal point because the production of a"coordinate” only allows one decimal
point. The result isthat the first coordinate will be "0.6" and the second coordinate will be ".5".

8.4 Distance along a path

Various operations, including text on a path and motion animation and various stroke operations, require that the
user agent compute the distance along the geometry of a graphics element, such as a'path'.

Exact mathematics exist for computing distance along a path, but the formulas are highly complex and require
substantial computation. It is recommended that authoring products and user agents employ algorithms that
produce as precise results as possible; however, to accommodate implementation differences and to help
distance cal culations produce results that approximate author intent, the length attribute can be used to provide
the author's computation of the total length of the path so that the user agent can scal e distance-along-a-path
computations by the ratio of length to the user agent's own computed value for total path length.

A "moveto" operation within a'path’ element is defined to have zero length. Only the various "lineto", "curveto
and "arcto” commands contribute to path length calculations.

8.5 DOM interfaces

The following interfaces are defined below: SV GPathElement, SV GPathSeg.

Interface SVGPathElement

The SV GPathElement interface corresponds to the 'path’ element.

The SV GPathElement interface provides two lists to access and modify the contents of the d attribute:

« DOM attribute pathSegL st provides access to the contents of the d attribute in a form which matches
one-for-one with SVG's syntax.

« DOM attribute normalizedPathSegL st provides normalized access to the contents of the d attribute
where all path data commands are expressed in terms of the following subset of SV GPathSeg types:
SVG_PATHSEG_MOVETO_ABS (M), SVG_PATHSEG_LINETO ABS(L),
SVG_PATHSEG_CURVETO_CUBIC_ABS(C) and SVG_PATHSEG_CLOSEPATH (2).

Thetwo lists are always kept synchronized. Modifications to one list will immediately cause the corresponding
list to be modified. Modifications to normalizedPathSegList might cause entries in pathSegL st to be broken into
aset of normalized path segments.

IDL Definition

i nterface SVGPat hEl enent : SVGEl enent, SVGIransformabl e, SVG.angSpace, SVGlests, EventTarget {
attribute DOVBtring cl assNang;
attribute SVG\Nunber | ength;
readonly attribute SVA.i st pat hSegli st ;
readonly attribute SVA.i st nor mal i zedPat hSeglLi st ;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Styl able SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG

/1 The followi ng pre-defined attribute collections are only
/1 available in the DOM for Exchange SVG

EXCHANGESVGFi | | StrokeAttrs;

EXCHANGESVGG aphi csAttrs;

#endi f EXCHANGESVG

fl oat :
SVGPoi nt get Poi nt At Length (in float distance)

H

Attributes

get Tot al Length (

rai ses(SVGException);

unsi gned | ong get Pat hSegAt Length (in float distance)

rai ses(SVGException);

SVGPat hSeg createSVGPathSeg ();

DOM String className

Corresponds to attribute class on the given element.

SV GNumber length

Corresponds to attribute length on the given 'path’ element.

readonly SV GList pathSegList

Provides access to the contents of the d attribute in aform which matches one-for-one with SVG's
syntax. Thus, if the d attribute has an "absolute moveto (M)" and an "absolute arcto (A)"
command, then pathSegList will have two entries: aSVG_PATHSEG_MOVETO_ABSand a
SVG_PATHSEG_ARC_ABS.

The various methods from SV GList, which are defined to accept parameters and return values of
type Object, must receive parameters of type SV GPathSeg and return values of type
SV GPathSeg.

readonly SV GList normalizedPathSegList

Methods

Provides access to the contents of the d attribute in aform where al path data commands are
expressed in terms of the following subset of SV GPathSeg types:
SVG_PATHSEG_MOVETO_ABS (M), SVG_PATHSEG_LINETO_ABS(L),
SVG_PATHSEG_CURVETO_CUBIC_ABS(C) and SVG_PATHSEG_CLOSEPATH (2). Thus,
if the d attribute has an "absolute moveto (M)" and an "absolute arcto (A)" command, then
pathSegList will have one SVG_PATHSEG_MOVETO_ABS entry followed by a series of
SVG_PATHSEG_ARC_ABS entries which approximate the arc. This alternate representation is
available to provide a simpler interface to developers who would benefit from amore limited set
of commands.

The various methods from SV GList, which are defined to accept parameters and return values of
type Object, must receive parameters of type SV GPathSeg and return values of type
SVGPathSeg, and the only valid SV GPathSeg types are SVG_PATHSEG_MOVETO_ABS (M),
SVG_PATHSEG LINETO ABS(L), SVG_PATHSEG CURVETO_CUBIC ABS(C) and
SVG_PATHSEG_CLOSEPATH (2).

getTota Length

Returns the user agent's computed value for the total length of the path using the user agent's
distance-along-a-path algorithm, as a distance in the current user coordinate system.

No Parameters
Return value

float Thetotal length of the path.

No Exceptions

getPointAtLength

Returns the (x,y) coordinate in user space whichisdi st ance units along the path, utilizing the
user agent's distance-along-a-path agorithm.

Parameters

in float distance The distance along the path, relative to the start of the path, as a distance
in the current user coordinate system.

Return value
SVGPoint The returned point in user space.

Exceptions
SVGException SVG_WRONG_TYPE_ERR: Raised if the parameter is the wrong type
of value.
getPathSegAtL ength

Returns the index into pathSegList which isdi st ance units along the path, utilizing the user
agent's distance-along-a-path algorithm.

Parameters

in float distance The distance along the path, relative to the start of the path, as a distance
in the current user coordinate system.

Return value
unsigned long The index of the path segment.

Exceptions
SVGException SVG_WRONG_TYPE_ERR: Raised if the parameter is the wrong type
of value.
createSV GPathSeg

Returns a stand-alone, parentless SV GPathSeg object which isinitialized such that pathSegType
isSVG_PATHSEG_UNKNOWN, pathSegTypeAsL etter is the empty string, and all other values
are set to zero or (for the booleans) false. Before such an SV GPathSeg object can be inserted into
one of an SVGPathElement's list of path commands, one of the attributes pathSegType or
pathSegTypeAsL etter must be initialized to an appropriate value and the other attribute must have
correct value settings.

No Parameters
Return value
SVGPathSeg An SV GPathSeg with a pathSegType of SVG_PATHSEG_UNKNOWN.

No Exceptions

Interface SVGPathSeg

The SV GPathSeg interface corresponds to a single command within a path data specification.

IDL Definition

interface SVGPat hSeg {

/1 Path Segnent Types

const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant
const ant

b

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short

SVG_PATHSEG_ UNKNOWN
SVG_PATHSEG CLOSEPATH
SVG_PATHSEG_MOVETO ABS
SVG_PATHSEG_MOVETO_REL

SVG_PATHSEG LI NETO_ABS
SVG_PATHSEG LI NETO_REL
SVG_PATHSEG_CURVETO CUBI C_ABS
SVG_PATHSEG CURVETO_CUBI C_REL
SVG_PATHSEG_CURVETO QUADRATI C_ABS
SVG_PATHSEG _CURVETO QUADRATI C_REL
SVG_PATHSEG ARC _ABS

SVG_PATHSEG ARC_REL

SVG_PATHSEG LI NETO HORI ZONTAL_ABS
SVG_PATHSEG LI NETO_HORI ZONTAL_REL
SVG_PATHSEG LI NETO_VERTI CAL_ABS
SVG_PATHSEG LI NETO_VERTI CAL_REL
SVG_PATHSEG _CURVETO CUBI C_SMOOTH_ABS
SVG_PATHSEG _CURVETO_CUBI C_SMOOTH_REL

SVG_PATHSEG_CURVETO_QUADRATI C_SMOOTH_ABS
SVG_PATHSEG_CURVETO_QUADRATI C_SMOOTH_REL

unsi gned short pathSegType

DOvVSt
fl oat
f1 oat
fl oat
fl oat
f 1 oat
fl oat
fl oat
fl oat
f1 oat

ring pat hSegTypeAsLetter;

X,

y;

x1;

yl;

X2

y2;

ril;

r2;

angl e

bool ean | argeAr cFl ag;
bool ean sweepFl ag;

Definition group Path Segment Types
Defined constants
SVG_PATHSEG_UNKNOWN

SVG_PATHSEG_CLOSEPATH

SVG_PATHSEG_MOVETO ABS

SVG_PATHSEG_MOVETO_REL

SVG_PATHSEG_LINETO_ABS

SVG_PATHSEG_LINETO_REL

SVG_PATHSEG_CURVETO_CUBIC_ABS

CRNITRLONEO

1 1 1 1 1 1 1 I A I I A1
-
o

The unit type is not one of
predefined types. It isinvalid
to attempt to define a new
value of thistype or to attempt
to switch an existing value to
thistype.

Corresponds to a " closepath”
(2) path data command.

Corresponds to an "absolute
moveto" (M) path data
command.

Corresponds to a"relative
moveto" (m) path data
command.

Corresponds to an "absolute
lineto" (L) path data command.
Corresponds to a"relative
lineto" (1) path data command.

Corresponds to an "absolute
cubic bezier curveto" (C) path
data command.

SVG_PATHSEG_CURVETO _CUBIC_REL

SVG_PATHSEG_CURVETO_QUADRATIC_ABS

SVG_PATHSEG_CURVETO_QUADRATIC_REL

SVG_PATHSEG _ARC_ABS
SVG_PATHSEG ARC REL

SVG_PATHSEG_LINETO_HORIZONTAL_ABS

SVG_PATHSEG_LINETO_HORIZONTAL_REL

SVG_PATHSEG_LINETO_VERTICAL_ABS

SVG_PATHSEG_LINETO VERTICAL_REL

SVG_PATHSEG_CURVETO CUBIC_SMOOTH_ABS

SVG_PATHSEG_CURVETO_CUBIC_SMOOTH_REL

Corresponds to a"relative
cubic bezier curveto" (c) path
data command.

Corresponds to an "absolute
quadratic bezier curveto” (Q)
path data command.

Corresponds to a "relative
quadratic bezier curveto” ()
path data command.

Corresponds to an "absolute
arcto” (A) path data command.

Corresponds to a""relative
arcto” (a) path data command.

Corresponds to an "absolute
horizontal lineto" (H) path data
command.

Corresponds to a"relative
horizontal lineto" (h) path data
command.

Corresponds to an "absolute
vertical lineto" (V) path data
command.

Corresponds to a"relative
vertical lineto" (v) path data
command.

Corresponds to an "absolute
smooth cubic curveto” (S) path
data command.

Correspondsto a "relative
smooth cubic curveto” (s) path
data command.

SVG_PATHSEG_CURVETO_QUADRATIC_SMOOTH_ABS Corresponds to an "absolute

smooth quadratic curveto” (T)
path data command.

SVG_PATHSEG_CURVETO QUADRATIC_SMOOTH_REL Correspondsto a"relative

Attributes
unsigned short pathSegType

smooth quadratic curveto” (t)
path data command.

The type of the path segment as specified by one of the constants specified above. Setting
pathSegType will automatically cause pathSegTypeAsL etter to be updated with the

corresponding one character path data command name.
DOM String pathSegTypeAsL etter

The type of the path segment, specified by the corresponding one character command name.
Setting pathSegTypeAsL etter will automatically cause pathSegType to be updated with the

corresponding integer constant.
float x

The X coordinate for the end point of this path segment.
float y

The Y coordinate for the end point of this path segment.

float x1

For a cubic bezier curve segment, the X coordinate for the first control point. For a quadratic
bezier curve segment, the X coordinate for the control point. For all other path segment types, it
will be set to the X coordinate for the start point for the path segment.

float y1

For acubic bezier curve segment, the Y coordinate for the first control point. For a quadratic
bezier curve segment, the Y coordinate for the control point. For all other path segment types, it
will be set to the Y coordinate for the start point for the path segment.

float x2

For a cubic bezier curve segment, the X coordinate for the second control point. For all other path
segment types, it will be set to the X coordinate for the end point for the path segment.

float y2

For a cubic bezier curve segment, the Y coordinate for the second control point. For al other path
segment types, it will be set to the Y coordinate for the end point for the path segment.

float r1

For an arc segment, the X axisradiusfor the ellipse (i.e., r1). For all other path segment types, it
will be set to zero.

float r2

For an arc segment, the Y axisradius for the ellipse (i.e., r2). For all other path segment types, it
will be set to zero.

float angle

For an arc segment, the rotation angle in degrees for the ellipse's X-axis relative to the X-axis of
the user coordinate system. For all other path segment types, it will be set to zero.

boolean largeArcFag

For an arc segment, the value of the large-arc-flag parameter. For all other path segment types, it
will be set to false.

boolean sweepFlag

For an arc segment, the value of the sweep-flag parameter. For all other path segment types, it
will be set to false.

previous next contents properties index

previous next contents properties index

9 Basic Shapes

Contents

« 9.1 Introduction

o 9.2 The'rect’ element
o 9.3 The'circle’ element
e 9.4 The'dlipse element
e 9.5The'line element

¢ 9.6 The'polyline e ement

e 9.7 The'polygon' e ement

« 9.8 The grammar for points specifications in 'polyline' and 'polygon' e ements
o« 9.9 DOM interfaces

9.1 Introduction

SV G contains the following set of basic shape elements:
« rectangles (rectangle, including optional rounded corners)
- circles
« éllipses
o lines
« polylines
« polygons
Mathematically, these shape elements are equivalent to a 'path’ element that would construct the same shape. The

basic shapes may be stroked, filled and used as clip paths. All of the properties available for 'path’ elements also
apply to the basic shapes.

9.2 The 'rect' element

The 'rect’ element defines arectangle which is axis-aligned with the current user coordinate system. Rounded
rectangles can be achieved by setting appropriate values for attributes rx and ry.

<IENTITY %rectExt "" >
<! ELEMENT rect (%lescTitle;, (animate|set|ani mat eMti on|ani mat eCol or | ani mat eTr ansf orm

YgeExt; %ect Ext;)*) >

<! ATTLI ST rect
YstdALtrs;
% angSpaceAttrs;
class % asslList; #l MPLIED
transform %ransfornlist; #l MPLIED
%gr aphi csEl enent Event s;
%iestAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
X %Coor di nat e; #| MPLI ED

y % Coordi nate; #l MPLI ED

wi dth %.ength; #REQUI RED

hei ght %.engt h; #REQUI RED

rx %.ength; #l MPLI ED

ry %ength; #l MPLIED

9GSt yl abl eSVG Styl eAttribute;

%&ExchangeSVG Fi | | StrokeAttrs;
%ExchangeSVG G aphi csAttrs; >

Attribute definitions:
X = "<coordinate>"

The X-axis coordinate of the side of the rectangle which has the smaller X-axis coordinate valuein the
current user coordinate system.

The default valueis"0".

Animatable: yes.

y = "<coordinate>"

The Y -axis coordinate of the side of the rectangle which has the smaller Y -axis coordinate value in the
current user coordinate system.

The default valueis"0".

Animatable: yes.

width = "<length>"

The width of the rectangle.
Animatable: yes.

height = "<length>"
The height of the rectangle.
Animatable: yes.

rx = "<length>"

For rounded rectangles, the X-axis radius of the ellipse used to round off the corners of the rectangle. If a
negative X-axis radiusis specified, the absolute value of the radius will be used.
Animatable: yes.

ry = "<length>"

For rounded rectangles, the Y -axis radius of the ellipse used to round off the corners of the rectangle. If a
negative Y -axis radius is specified, the absolute value of the radius will be used.
Animatable: yes.

Attributes defined €l sewhere:

Y%ostdAttrs;, %langSpaceAttrs;, transform, %ographi csElementEvents;, %testAttrs;,
%StylableSV G-StyleAttribute;.

If aproperly specified value is provided for rx but not for ry, then the user agent processes the 'rect' element with the
effective value for ry as equal to rx. If aproperly specified value is provided for ry but not for rx, then the user agent

processes the 'rect’ element with the effective value for rx as equal to ry. If neither rx nor ry has a properly specified
value, then the user agent processes the 'rect' element asif no rounding had been specified, resulting in square
corners. If rx is greater than half of the width of the rectangle, then the user agent processes the 'rect’ element with the
effective value for rx as half of the width of the rectangle. If ry is greater than half of the height of the rectangle, then
the user agent processes the 'rect’ element with the effective value for ry as half of the height of the rectangle.

Mathematically, a'rect' element can be mapped to an equivaent 'path’ element as follows: (Note: all coordinate and
length values are first converted into user space coordinates according to Processing rules for CSS units and

percentages.)
« perform an absolute moveto operation to location (x+rx,y), where x is the value of the 'rect’ element's x
attribute converted to user space, rx is the effective value of the rx attribute converted to user spaceandy is
the value of they attribute converted to user space

« perform an absolute horizontal lineto operation to location (x+width-rx,y), where width is the 'rect' element's
width attribute converted to user space

« perform an absolute elliptical arc operation to coordinate (x+width,y+ry), where the effective values for the
rx and ry attributes on the 'rect’ element converted to user space are used as the rx and ry attributes on the
eliptical arc command, respectively, the x-axis-rotation is set to zero, the large-arc-flag is set to zero, and the
sweep-flag is set to one

« perform a absolute vertical lineto to location (x+width,y+height-ry), where height is the 'rect’ element's height
attribute converted to user space

« perform an absolute elliptical arc operation to coordinate (x+width-rx,y+height)

« perform an absolute horizontal lineto to location (x+rx,y+height)
« perform an absolute elliptical arc operation to coordinate (x,y+ height-ry)

« perform an absolute absolute vertical lineto to location (X,y+ry)
« perform an absolute elliptical arc operation to coordinate (x+rx,y)

Example rectO1 below expresses all valuesin physical units (centimeters, in this case). The 'rect’ element isfilled
with yellow and stroked with navy.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLI C "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="12cn{ hei ght ="4cni' >

<desc>Exanpl e rect0l - rectangl e expressed in physical units</desc>

<rect x="4cni' y="1cnt' wi dth="4cn hei ght="2cnf
style="fill:yellow, stroke:navy; stroke-w dth:0.1lcn />
</ svg>

Example rect01

View this example as SV G (SV G-enabled browsers only)

Example rect02 below specifies the coordinates of the two rounded rectangles in the user coordinate system

file:///d|/public/svgspec/images/shapes/rect01.svg

established by the viewBox attribute on the 'svg' element and the transform attribute on the 'g' element. The rx
specifies how to round the corners of the rectangles. Note that since no value has been specified for the ry attribute, it
will be assigned the same value as the rx attribute.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="12cnf hei ght="4cm' vi ewBox="0 0 1200 400">

<desc>Exanpl e rect02 - rounded rectangl es expressed in user coordi nates</desc>

<rect x="100" y="100" wi dt h="400" hei ght="200" rx="50"
style="fill:green;" />

<g transforn¥"transl ate(700 300); rotate(-30)">
<rect x="0" y="0" w dt h="400" hei ght="200" rx="50"
style="fill:none; stroke:purple; stroke-w dth:30" />
</ g>
</ svg>

Example rect02

View this example as SV G (SV G-enabled browsers only)

9.3 The 'circle' element

The'circle’ element defines a circle based on a center point and aradius.

<IENTITY %circleExt "" >
<! ELEMENT circle (%escTitle;, (animate|set|ani mat eMdti on| ani mat eCol or | ani mat eTr ansf orm
Y%geExt; %ircl eExt;)*) >
<I ATTLI ST circle
st dAttrs;
% angSpaceAttrs;
class % assList; #l MPLIED
transform %lransfornlist; #l MPLI ED
%gr aphi csEl enent Event s;
% estAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
cx YCoordi nate; "0"
cy % Coordinate; "0"
r %.ength; #REQU RED
%St yl abl eSVG Styl eAttribute;

%ExchangeSVG Fi | | StrokeAttrs;
%ExchangeSVG G aphi csAttrs; >

Attribute definitions;
cx = "<coordinate>"
The X-axis coordinate of the center of the circle.

The default valueis"0".
Animatable: yes.

file:///d|/public/svgspec/images/shapes/rect02.svg

¢y = "<coordinate>"

The 'Y -axis coordinate of the center of the circle.
The default valueis"0".
Animatable: yes.

r ="<length>"

Theradius of thecircle. If anegative radiusis specified, the absolute value of the radius will be used.
Animatable: yes.

Attributes defined €l sewhere:

%ostdAttrs;, %langSpaceAttrs;, transform, %ographi csElementEvents;, %testAttrs;,
%StylableSV G-StyleAttribute;.

Example circle01 below expresses all valuesin physical units (centimeters, in this case). The 'circle’ element isfilled
with red and stroked with blue.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLI C "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww.w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="12cni hei ght ="4cni >

<desc>Exanple circle0l - circle expressed in physical units</desc>

<circle cx="6cnt' cy="2cn r="1cnf
style="fill:red; stroke:blue; stroke-w dth:0.21lcnt />
</ svg>

Example circle01

View this example as SV G (SV G-enabled browsers only)

9.4 The 'ellipse' element

The'dlipse’ element defines an ellipse which is axis-aligned with the current user coordinate system based on a
center point and two radii.

file:///d|/public/svgspec/images/shapes/circle01.svg

<IENTITY %ellipseExt "" >
<! ELEMENT el |l i pse (%descTitle;, (aninate|set|ani mat eMdti on| ani mat eCol or | ani mat eTr ansform

Y%geExt; %l | i pseExt;)*) >

<I ATTLI ST el lipse

YstdALtrs;

% angSpaceAttrs;

class % asslList; #l MPLIED

transform %ransfornlist; #l MPLIED

%gr aphi csEl enent Event s;

%iestAttrs;

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED

cx %Coordi nate; "O0"
% oor di nate; "O0"
%.engt h; #REQUI RED

%.engt h; #REQUI RED
uGt yl abl eSVG Styl eAttribute;

%ExchangeSVG Fil | StrokeAttrs;
%ExchangeSVG Graphi csAttrs; >

2 |

<K

Attribute definitions:
cx = "<coordinate>"

The X-axis coordinate of the center of the ellipse.
The default valueis"0".
Animatable: yes.

¢y = "<coordinate>"

The Y -axis coordinate of the center of the ellipse.
The default valueis"0".
Animatable: yes.

rx = "<length>"

The X-axisradius of the ellipse. If a negative X-axis radiusis specified, the absolute value of the radius will
be used.
Animatable: yes.

ry = "<length>"

The Y-axisradius of the ellipse. If anegative Y-axis radiusis specified, the absolute value of the radius will
be used.
Animatable: yes.

Attributes defined €l sewhere:

YostdAttrs;, YolangSpaceAttrs;, transform, %graphi csElementEvents;, %testAttrs;,
%StylableSV G-StyleAttribute;.

Example ellipse01 below specifies the coordinates of the two ellipses in the user coordinate system established by the
viewBox attribute on the 'svg' element and the transform attribute on the 'g' 'ellipse’ elements. Both ellipses uses the

default values of zero for the cx and cy attributes (the center of the ellipse). The second ellipse is rotated.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="12cnf hei ght="4cnm' vi ewBox="0 0 1200 400" >

<desc>Exanpl e el lipse0l - ellipses expressed in user coordi nates</desc>

<g transforne"transl at e(300 200)">
<el i pse rx="250" ry="100"
style="fill:red" />
</ g>

<el | i pse transforne"transl ate(900 200); rotate(30)"
rx="250" ry="100"
style="fill:none; stroke:blue; stroke-wi dth: 20" />

</ svg>

Example ellipse01
View this example as SV G (SV G-enabled browsers only)

9.5 The 'line' element

The'line' element defines a line segment that starts at one point and ends at another.

<IENTITY % lineExt "" >
<I ELEMENT |ine (%descTitle;, (aninmate|set|ani mateMtion|ani mateCol or|ani mat eTransform
YgeExt; % ineExt;)*) >

<! ATTLI ST Line
YstdALtrs;
% angSpaceAttrs;
class % assList; #l MPLIED
transform %ransfornlist; #l MPLIED
%gr aphi csEl enent Event s;
%iestAttrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
x1 %Coordi nate; "O0"

% oor di nate; "O0"

%Coor di nate; "O0"

% oor di nate; "O0"

YGt yl abl eSVG Styl eAttribute;

%ExchangeSVG Fi | | StrokeAttrs;
%ExchangeSVG Gr aphi csAttrs;
%ExchangeSVG Mar ker Attrs; >

RREI

Attribute definitions:
X1 = "<coordinate>"

The X-axis coordinate of the start of the line.
The default valueis"0".
Animatable: yes.

y1 ="<coordinate>"

The 'Y -axis coordinate of the start of the line.
The default valueis"0".
Animatable: yes.

X2 = "<coordinate>"

The X-axis coordinate of the end of the line.
The default valueis"0".

file:///d|/public/svgspec/images/shapes/ellipse01.svg

Animatable: yes.
y2 = "<coordinate>"

The Y -axis coordinate of the end of theline.
The default valueis"0".
Animatable: yes.

Attributes defined €l sewhere:

YostdAttrs;, YolangSpaceAttrs;, transform, %graphi csElementEvents;, %testAttrs;,
%StylableSV G-StyleAttribute;.

Mathematically, an 'line’ element can be mapped to an equivalent 'path’ element as follows. (Note: all coordinate and
length values are first converted into user space coordinates according to Processing rules for CSS units and

percentages.)

« perform an absolute moveto operation to absolute location (x1,y1), where x1 and y1 are the values of the 'line
element's x1 and y1 attributes converted to user space, respectively

« perform an absolute lineto operation to absolute location (x2,y2), where x2 and y2 are the values of the 'line
element's x2 and y2 attributes converted to user space, respectively

Example line01 below specifies the coordinates of the five linesin the user coordinate system established by the
viewBox attribute on the 'svg' element. The lines have different thicknesses.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLI C "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="12cnt hei ght="4cnt vi ewBox="0 0 1200 400">

<desc>Exanpl e lineOl - |lines expressed in user coordi nates</desc>

<g style="fill:none; stroke:green">
<l'ine x1="100" y1="300" x2="300" y2="100"
styl e="stroke-w dth: 5" />
<l'ine x1="300" y1="300" x2="500" y2="100"
styl e="stroke-w dt h: 10" />
<l'ine x1="500" y1="300" x2="700" y2="100"
styl e="stroke-w dt h: 15" />
<l'ine x1="700" y1="300" x2="900" y2="100"
styl e="stroke-w dt h: 20" />
<l'ine x1="900" y1="300" x2="1100" y2="100"
styl e="stroke-w dt h: 25" />
</ g>
</ svg>

S S

Example line01

View this example as SV G (SV G-enabled browsers only)

file:///d|/public/svgspec/images/shapes/line01.svg

9.6 The 'polyline' element

The 'polyline’ element defines a set of connected straight line segments. Typicaly, ‘polyline' elements define open
shapes.

<IENTITY % pol yl i neExt "" >
<! ELEMENT polyline (%descTitle;, (ani mate| set| ani mat eMoti on| ani mat eCol or | ani mat eTr ansf orm
YgeExt ; %pol yli neExt;)*) >
<I ATTLI ST polyline
YstdAttrs;
% angSpaceAttrs;
class % asslList; #l MPLIED
transform %lransfornlist; #l MPLI ED
%gr aphi csEl enent Events;
% est Attrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
poi nts %Poi nts; #REQUI RED
%St yl abl eSVG Styl eAttribute;

%ExchangeSVG Fi | | StrokeAttrs;
%EXxchangeSVG Gr aphi csAttrs;
%ExchangeSVG Marker Attrs; >

Attribute definitions;
points = "<list-of-points>"

The points that make up the polyline. All coordinate values are in the user coordinate system.
Animatable: yes.

Attributes defined elsewhere:

YostdAttrs;, YolangSpaceAttrs;, transform, %ographi csElementEvents;, %testAttrs;,
%StylableSV G-StyleAttribute;.

If an odd number of pointsis provided, then the element isin error, with the same user agent behavior as occurs with
an incorrectly specified 'path’ element.

Mathematically, a 'polyline' element can be mapped to an equivalent 'path’ element as follows:. (Note: al coordinate
and length values are first converted into user space coordinates according to Processing rules for CSS units and

percentages.)
« perform an absolute moveto operation to the first coordinate pair in the list of points

« for each subsequent coordinate pair, perform an absolute lineto operation to that coordinate pair.

Example polyline01 below specifies apolyline in the user coordinate system established by the viewBox attribute on
the 'svg' element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLI C "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg w dt h="12cnt hei ght="4cnt vi ewBox="0 0 1200 400">

<desc>Exanpl e pol yline0l1 - increasingly |arger bars</desc>

<pol yline style="fill:none; stroke:blue; stroke-w dth:10cnf
poi nt s="50, 375
150, 375 150, 325 250, 325 250, 375
350, 375 350, 250 450, 250 450, 375
550, 375 550, 175 650, 175 650, 375
750, 375 750, 100 850, 100 850, 375
950, 375 950, 25 1050, 25 1050, 375
1150, 375" />
</ svg>

[1

Example polyline0l

View this example as SV G (SV G-enabled browsers only)

9.7 The 'polygon' element

The 'polygon' element defines a closed shape consisting of a set of connected straight line segments.

<IENTITY % pol ygonExt "" >
<! ELEMENT pol ygon (%descTitl e;, (ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani nat eTr ansf orm
%geExt ; %pol ygonExt;)*) >
<I ATTLI ST pol ygon
Y%stdAttrs;
% angSpaceAttrs;
class % asslList; #l MPLIED
transform %lransfornlist; #l MPLI ED
%gr aphi csEl enent Event s;
% est Attrs;
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
poi nts %Poi nts; #REQUI RED
%St yl abl eSVG Styl eAttribute;

%ExchangeSVG Fi | | StrokeAttrs;
%ExchangeSVG Gr aphi csAttrs;
%ExchangeSVG Marker Attrs; >

Attribute definitions;
points = "<list-of-points>"

The points that make up the polygon. All coordinate values are in the user coordinate system.
Animatable: yes.

Attributes defined elsewhere:

YostdAttrs;, YolangSpaceAttrs;, transform, %ographi csElementEvents;, %testAttrs;,
%StylableSV G-StyleAttribute;.

If an odd number of pointsis provided, then the element isin error, with the same user agent behavior as occurs with
an incorrectly specified 'path’ element.

Mathematically, a 'polygon’ element can be mapped to an equivalent 'path’ element as follows:. (Note: all coordinate
and length values are first converted into user space coordinates according to Processing rules for CSS units and
percentages.)

« perform an absolute moveto operation to the first coordinate pair in the list of points

« for each subsequent coordinate pair, perform an absolute lineto operation to that coordinate pair
« perform a closepath command

file:///d|/public/svgspec/images/shapes/polyline01.svg

Example polygon01 below specifies two polygons (a star and a hexagon) in the user coordinate system established
by the viewBox attribute on the 'svg' element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

“http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="12cnf hei ght="4cni' vi ewBox="0 0 1200 400">

<desc>Exanpl e pol ygon01 - star and hexagon</desc>

<pol ygon style="fill:red; stroke:blue; stroke-wi dth:10"
poi nt s="350, 75 379, 161 469, 161 397, 215
423,301 350,250 277,301 303, 215
231,161 321, 161" />
<pol ygon style="fill:lime; stroke:blue; stroke-w dth: 10"
poi nt s="850, 75 958, 137.5 958, 262.5
850, 325 742,262.6 742,137.5" />
</ svg>

Example polygon0O1
View this example as SV G (SV G-enabled browsers only)

9.8 The grammar for points specifications in '‘polyline' and 'polygon' elements

The following is the BNF for points specificationsin 'polyline' and 'polygon’ elements. The following notation is
used:

e *:00rmore

e +:10rmore

e« 200r1

(): grouping

o |- separates alternatives

« double quotes surround literals

|'i st-of-points:
wsp* coordi nat e-pai rs?

coordi nat e-pairs
coordi nat e- pai r
| coordinate-pair comma-wsp coordinate-pairs

coordi nat e- pai r:
coordi nate conma-wsp coordi nate

coordi nate
numnber - wsp

nunber - wsp:
nunber wsp*

nunber :
si gn? i nteger-constant
| sign? floating-point-constant

file:///d|/public/svgspec/images/shapes/polygon01.svg

i nt eger-constant:
di gi t - sequence

fl oati ng- poi nt-const ant:
fracti onal - constant exponent?
| digit-sequence exponent

fractional -constant:
di gi t-sequence? "." digit-sequence
| digit-sequence "."

exponent :
("e" | "E'") sign? digit-sequence

si gn:
gl

di gi t - sequence:
di git
| digit digit-sequence
digit:
"o | "1 | "2 | "3* | "4 | "5" | "6" | "7 | "8" | "9"

wsp:
(#x20 | #x9 | #xD | #xA)+

9.9 DOM interfaces

The following interfaces are defined below: SV GRectElement, SV GCircleElement, SV GEllipseElement,
SV GLineElement, SV GPolylineElement, SV GPolygonElement.

Interface SVGRectElement

The SV GRectElement interface corresponds to the 'rect' element.

IDL Definition

interface SVGRect El enent : SVCEl enent, SVGIransfornabl e, SVG.angSpace, SVGlests, EventTarget {
attribute DOVBtring cl assNane;
attribute SVG.ength x;
attribute SVG.ength y;
attribute SVG.ength w dt h;
attribute SVG.ength hei ght;
attribute SVG.ength rx;
attribute SVG.ength ry;

#i f def STYLABLESVG
/] The follow ng pre-defined attribute collections are only
/] available in the DOM for Styl able SVG
STYLABLESVGStyl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The follow ng pre-defined attribute collections are only
/] available in the DOM for Exchange SVG

EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGGr aphi csAttrs;
#endi f EXCHANGESVG

b

Attributes
DOM String className
Corresponds to attribute class on the given element.

SVGLength x

Corresponds to attribute x on the given 'rect' element.
SVGLengthy

Correspondsto attribute y on the given 'rect’ element.
SVGLength width

Corresponds to attribute width on the given 'rect’ element.
SVGLength height

Corresponds to attribute height on the given 'rect' element.
SVGLength rx

Corresponds to attribute rx on the given 'rect’ el ement.
SVGLength ry

Corresponds to attribute ry on the given 'rect' element.

Interface SVGCircleElement

The SV GCircleElement interface corresponds to the 'rect’ element.

IDL Definition

interface SVGCircl eEl ement : SVGEl enent, SVGIransformbl e, SVG.angSpace, SVGTests,

attribute DOVBtring cl assNane;
attribute SVG.ength cx;
attribute SVG.ength cy;
attribute SVG.ength r;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Styl able SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The followi ng pre-defined attribute collections are only
/] available in the DOM for Exchange SVG
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGGr aphi csAttrs;
#endi f EXCHANGESVG

}s

Attributes
DOM String className
Corresponds to attribute class on the given element.
SVGLength cx
Corresponds to attribute cx on the given ‘circle’ e ement.

Event Tar get {

SVGLength cy

Corresponds to attribute cy on the given 'circle’ element.
SVGLengthr

Correspondsto attribute r on the given ‘circle’ element.

Interface SVGEIllipseElement

The SV GEllipseElement interface corresponds to the 'ellipse’ element.

IDL Definition

interface SVCEl | i pseEl ement : SVCGEl enent, SVGIransfornabl e, SVG.angSpace, SVGlests, Event Target {
attribute DOVBtring cl assNane;
attribute SVG.ength cx;
attribute SVG.ength cy;
attribute SVG.ength rx;
attribute SVG.ength ry;

#i f def STYLABLESVG
/1l The follow ng pre-defined attribute collections are only
/] available in the DOMfor Stylable SVG
STYLABLESVGSt yl eAttri but e;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Exchange SVG
EXCHANGESVGFi | | St rokeAttrs;
EXCHANGESVGGr aphi csAttrs;
#endi f EXCHANGESVG

}s

Attributes

DOM String className

Corresponds to attribute class on the given element.
SVGLength cx

Corresponds to attribute cx on the given 'ellipse’ el ement.
SVGLength cy

Corresponds to attribute cy on the given 'ellipse’ element.
SVGLength rx

Correspondsto attribute rx on the given 'ellipse’ e ement.
SVGLength ry

Corresponds to attribute ry on the given 'ellipse’ element.

Interface SVGLineElement
The SV GLineElement interface corresponds to the 'line' element.

IDL Definition

interface SVGQi neEl enent : SVGEl enent, SVGIransfornmabl e, SVG.angSpace, SVGTests, EventTarget {
attribute DOVBtring cl assNane;
attribute SVG.ength x1;

attribute SVG.ength y1;
attribute SVG.ength x2;
attribute SVG.ength y2;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Styl able SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The follow ng pre-defined attribute collections are only
/] available in the DOM for Exchange SVG
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGGr aphi csAttrs;
#endi f EXCHANGESVG

}s

Attributes

DOM String className

Corresponds to attribute class on the given element.
SVGLength x1

Correspondsto attribute x1 on the given 'line' el ement.
SVGLengthyl

Corresponds to attribute y1 on the given 'line' element.
SVGLength x2

Correspondsto attribute x2 on the given 'line' el ement.
SVGLengthy2

Correspondsto attribute y2 on the given 'line' el ement.

Interface SVGPolylineElement

The SV GPalylineElement interface corresponds to the ‘polyline' element.

IDL Definition

interface SVGPol yl i neEl ement : SVCEl ement, SVGIransformabl e, SVG.angSpace, SVGlests, EventTarget {
attribute DOVBtring cl assNane;
readonly attribute SVGList points;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Styl able SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The follow ng pre-defined attribute collections are only
/] available in the DOM for Exchange SVG
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGGr aphi csAttrs;
#endi f EXCHANGESVG

}s

Attributes
DOM String className
Corresponds to attribute class on the given element.

readonly SVGList points

Provides access to the contents of the points attribute.

The various methods from SV GList, which are defined to accept parameters and return values of type
Object, must receive parameters of type SV GPoint and return values of type SVGPoint.

Interface SVGPolygonElement

The SV GPolygonElement interface corresponds to the 'polygon’ element.

IDL Definition

i nterface SVGPol ygonEl ement : SVCEl ement, SVGIransformabl e, SVG.angSpace,

attribute DOVBtring cl assNane;
readonly attribute SVA.i st points;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Styl able SVG
STYLABLESVGSt yl eAttri but e;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Exchange SVG
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGGr aphi csAttrs;
#endi f EXCHANGESVG

}s

Attributes
DOM String className
Corresponds to attribute class on the given element.
readonly SVGList points

Provides access to the contents of the points attribute.

SVGTests, EventTarget {

The various methods from SV GL.ist, which are defined to accept parameters and return values of type
Object, must receive parameters of type SV GPoint and return values of type SV GPoint.

previous next contents properties index

previous next contents properties index

10 Text

Contents

e 10.1 Introduction

« 10.2 Characters and their corresponding glyphs
o 10.3 The'text' element
o 10.4 The 'tspan’ element
o 10.5 The'tref' element
« 10.6 Text layout
o 10.6.1 Text layout introduction

o 10.6.2 Setting the primary text advance direction

o 10.6.3 Glyph orientation within atext run
o 10.6.4 Relationship with bi-directionality
o 10.7 Alignment properties

o 10.7.1 Text aignment properties

o 10.7.2 Basdline alignment properties

« 10.8 Font selection properties

« 10.9 Spacing properties

» 10.10 Text decoration

» 10.11 Text on a path
o 10.11.1 Introduction to text on a path
o 10.11.2 The 'textPath’ element
o 10.11.3 Text on apath layout rules

o 10.12 Alternate glyphs

« 10.13 White space handling

o 10.14 Text selection

o 10.15 DOM interfaces

10.1 Introduction

Text that isto be rendered as part of an SV G document fragment is specified using the 'text' element.
The charactersto be drawn are expressed as XML character data[XML 10] inside the 'text’ element.

SVG's 'text’ elements are rendered like other graphics elements. Thus, coordinate system
transformations, painting, clipping and masking features apply to 'text' elements in the same way as they
apply to shapes such as paths and rectangles.

Each 'text' element causes a single string of text to be rendered. SV G performs no automatic line
breaking or word wrapping. To achieve the effect of multiple lines of text:

« The author or authoring package needs to pre-compute the line breaks and use multiple 'text'
elements (one for each line of text).

« Theauthor or authoring package needs to pre-compute the line breaks and use a single 'text’
element with one or more 'tspan’ child elements with appropriate values for attributes x, y, dx
and dy to set new start positions for those characters which start new lines. (This approach
allows user text selection across multiple lines of text -- see Text selection and clipboard
operations.)

» Expressthetext to be rendered in another XML namespace such as XHTML [XHTML]
embedded inline within a 'foreignObject’ element. (Note: the exact semantics of this approach are
not completely defined at thistime.)

The text strings within 'text’ elements can be rendered in a straight line or rendered along the outline of a
'path’ element. SV G supports the following international text processing features for both straight line
text and text on a path:

« horizontal and vertical orientation of text

« left-to-right, right-to-left and bi-directional text (e.g., for mixing Roman scripts with Arabic or
Hebrew scripts)

« When SVG fonts are used, automatic selection of the correct glyph corresponding to the current
form for Arabic and Han text

(The layout rules for straight line text are described in Text layout. The layout rules for text on a path are
described in Text on a path layout rules.)

Because SV G text is packaged as XML character data [XML 10]:
« Textdatain SVG content isreadily accessible to the visually impaired (see Accessibility
Support)

« Inmany viewing scenarios, the user will be able to search for and select text strings and copy
selected text strings to the system clipboard (see Text selection)

« XML-compatible web search engines will find text stringsin SV G content with no additional
effort over what they need to do to find text strings in other XML documents

Multi-language SV G content is possible by substituting different text strings based on the user's
preferred language.

For accessibility reasons, it is recommended that text which isincluded in a document have appropriate
semantic markup to indicate its function. See SV G accessibility quidelines for more information.

10.2 Characters and their corresponding glyphs

In XML [XML10], textual content is defined in terms of XML characters, where each character is
defined by a particular character (i.e., code point) in Unicode [UNICODE]. Fonts, on the other hand,

consists of a collection of glyphs, where each glyph consists of some sort of identifier (in some cases a
string, in other cases a number) along with drawing instructions for rendering that particular glyph.

In many cases, there is a one-to-one mapping of Unicode characters (i.e., Unicode code points) to glyphs
in afont. For example, it is common for a Roman font to contain a single glyph for each of the standard
ASCII characters (i.e., A-to-Z, a-to-z, 0-t0-9, plus the various punctuation characters found in ASCI1).
Thus, in most situations, the string "XML", which consists of three Unicode characters, would be
rendered by the three glyphs corresponding to " X", "M" and "L", respectively.

In various other cases, however, there is not a strict one-to-one mapping of Unicode charactersto
glyphs. Some of the circumstances when the mapping is not one-to-one:

« Ligatures - For best looking typesetting, it is often desirable that particular sequences of
characters are rendered as a single glyph. An example is the word "office". Many fonts will
define an "ffi" ligature. When the word "office" is rendered, sometimes the user agent will render
the glyph for the "ffi" ligature instead of rendering distinct glyphs (i.e., "f", "f" and "i") for each
of the three characters. Thus, for ligatures, multiple Unicode characters map to a single glyph.

« Composite characters - In various situations, commonly used adornments such as diacritical
marks will be stored once in afont as a particular glyph and then composed with one or more
other glyphsto result in the desired character. For example, it is possible that a font engine might
render the é character by first rendering the glyph for e and then rendering the glyph for * (the
accent mark) such that the accent mark will appear over the e. In this situation, a single Unicode
character map to multiple glyphs.

« Glyph substitution - Some typography systems examine the nature of the textual content and
utilize different glyphs in different circumstances. For example, in Arabic, the same Unicode
character might render as any of four different glyphs, depending on such factors as whether the
character appears at the start, the end or the middle of atext string. In these situations, asingle
Unicode character might map to one of severa alternative glyphs.

« Alternative glyph specification - SVG contains afacility for the author to explicitly specify that a
particular sequence of Unicode charactersisto be rendered using a particular glyph. (See
Alternate glyphs.) When this facility is used, multiple Unicode characters map to a single glyph.

In many situations, the algorithms for mapping from characters to glyphs are system-dependent,
resulting in the possibility that the rendering of text might be (usually slightly) different when viewed in
different user environments. If the author of SV G content requires precise selection of fonts and glyphs,
then the recommendation is that the necessary fonts (potentially subsetted to only include only the
glyphs needed for the given document) be available either as SV G fonts embedded within the SVG

content or as web fonts posted at the same web location as the SVG content.

10.3 The 'text' element

The 'text’ element defines a graphics element consisting of text. The XML [XML 10] character data

within the 'text' element, along with relevant attributes and properties and character-to-glyph mapping
tables within the font itself, define the glyphs to be rendered. (See Characters and their corresponding

alyphs.) The attributes and properties on the 'text' element indicate such things as the writing direction,

font specification and painting attributes which describe how exactly to render the characters.
Subsequent sections of this chapter describe the relevant text-specific attributes and properties.

Since 'text' elements are rendered using the same rendering methods as other graphics element, all of the
same coordinate system transformations, painting, clipping and masking features that apply to shapes
such as paths and rectangles also apply to 'text' elements.

The 'text' rendersits first character at theinitial current text position, which is established by the x and y
attributes. After the glyph(s) corresponding to the given character is(are) rendered, the current text
position is updated for the next character. In the ssimplest case, the new current text position is the
previous current text position plus the glyphs' text advance value (horizontal or vertical). See text layout
for adescription of glyph placement and glyph advance.

<IENTITY %textExt "" >
<! ELEMENT text (#PCDATA| desc|title]|

tspan|tref|textPath|altd yph|al ani mate| set |
ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf orm
%geExt; % ext Ext;)* >

<! ATTLI ST text
st dAttrs;
% angSpaceAttrs;
class % assList; #l MPLI ED
transf orm %ransforniist; #l MPLIED
%gr aphi csEl enent Event s;
% est Attrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
X %Coordi nate; #|l MPLI ED
y % Coordi nate; #I MPLI ED
%St yl abl eSVG Styl eAttri bute;

%EXxchangeSVG Fil | StrokeAttrs;
%EXchangeSVG Graphi csAttrs;
%ExchangeSVG Text Cont ai ner Attrs;
%ExchangeSVG Text El enent Attrs; >

Attribute definitions:
X = "<coordinate>"

The X-coordinate for the initial current text position for the text to be drawn. If thevalueis
expressed as a simple <number> without a unit identifier (e.g., 48), then the value represents a
coordinate in the current user coordinate system.

If one of the CSS unit identifiersis provided (e.g., 12pt or 10%), then the value represents a
distance in viewport units relative to the origin of the user coordinate system. (See Processing
rules for CSS units and percentages.) The default valueis"0".

Animatable: yes.

y = "<coordinate>"

The corresponding Y -coordinate for the initial current text position. The default valueis"0".
Animatable: yes.

Attributes defined elsewhere:

Y%stdAttrs;, Y%langSpaceAttrs;, transform, %ographi csElementEvents;, YotestAttrs;,
%StylableSV G-StyleAttribute;.

Example textO1 below expresses all values in physical units such as centimeters and points. The 'text'
element contains the text string "Hello, out there" which will be rendered onto the canvas using the
Verdanafont family with font size of 12 points with the glyphs filled with the color blue.

<?xm version="1.0" standal one="no" ?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="10cm" hei ght ="3cni' >

<desc>Exanple text0l1 - 'Hello, out there' in blue</desc>

<text x="2.5cni" y="1.5cnt

style="font-famly: Verdana; font-size:16pt; fill:blue">
Hel | o, out there
</text>

</ svg>

Hello, out there

Example textO1

View this example as SV G (SV G-enabled browsers only)

Example text02 bel ow expresses the x and y attributes and the 'font-size' property in the user coordinate
system set up by the viewBox attribute on the 'svg' element. The 'text’ element contains the text string
"Text in user space.”

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="10cm' hei ght="3cm' vi ewBox="0 0 1000 300" >

<desc>Exanpl e text02 - Text in user space</desc>

<text x="250" y="150"
style="font-famly: Verdana; font-size:42.333; fill:blue">
Text in user space
</text>
</ svg>

file:///d|/public/svgspec/images/text/text01.svg

Text in user space

Exampl e text02

The DTD definition of a'text’ element allows for any number of 'desc’ or 'title' elements as children, with

no restrictions on the placement of these elements within the 'text' element. This flexibility is only
present due to the mixed content rules for XML [XML-MIXED]. Representations of future versions of

the SV G language might use more expressive representations than DTDs which allow for more
restrictive mixed content rules. It is strongly recommended that at most one 'desc' and at most one 'title

element appear, and that these elements appear before any other child elements or character data content
to match the restrictions on 'desc’ and 'titl€' that appear in the rest of the SVYG DTD. If user agents need

to choose among multiple 'desc’ or 'title' elements for processing (e.g., to decide which string to use for a
tooltip), the user agent shall choose the first one.

View this example as SV G (SV G-enabled browsers only)

10.4 The 'tspan' element

Within a'text' element, text and font properties and the current text position can be adjusted with
absolute or relative coordinate values by including a'tspan' el ement.

<IENTITY % tspanExt "" >
<! ELEMENT tspan (#PCDATA|tspan|tref|altd yph|alani mate|set|ani mat eCol or
% spanExt;)* >
<! ATTLI ST tspan
st dAttrs;
% angSpaceAttrs;
class % assList; #l MPLI ED
%gr aphi csEl enent Event s;
% est Attrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
X %Coor di nates; #l MPLI ED
y %Coordi nates; #l MPLI ED
dx %.engt hs; #l MPLI ED
dy %.engths; #l MPLI ED
rot ate CDATA #l MPLI ED
%St yl abl eSVG Styl eAttri bute;

%ExchangeSVG Fi | | StrokeAttrs;
%EXxchangeSVG Graphi csAttrs;
%ExchangeSVG Text Cont ai ner Attrs; >

Attribute definitions:
X = "<coordinate>+"

If asingle <coordinate> is provided, this value represents the new absolute X coordinate for the

file:///d|/public/svgspec/images/text/text02.svg

current text position for the first character within the 'tspan’ element. If acomma- or
space-separated list of <n> <coordinate>sis provided, then the values represent new absolute X
coordinates for the current text position for the first <n> characters within the 'tspan’ element. If
more <coordinate>s are provided than characters, then the extra <coordinate>s will have no
effect on glyph positioning. If more characters exist than <coordinate>s, then the starting X
coordinate of each extra character is positioned at the X coordinate of the resulting current text
position from rendering the previous character within the 'text' element.

CSS unit identifiers, such ascm, pt or %, can be provided for any <coordinate>. If a

<coordinate> is provided without a unit identifier (e.g., 48), then the value represents a
coordinate in the current user coordinate system. If a CSS unit identifier is provided (e.g., 12pt or
10%), then the value represents a distance in viewport units relative to the origin of the user
coordinate system. (Processing rules for CSS units and percentages.) The default valueis™0".

Animatable: yes.

y = "<coordinate>+"

The corresponding list of absolute Y coordinates for the characters within the ‘tspan' element.
The default valueis"0".
Animatable: yes.

dx = "<length>+"

If asingle <length> is provided, this value represents the new relative X coordinate for the
current text position for the first character within the 'tspan' element. Thus, the current text
position is shifted along the X axis of the current user coordinate system by <length>. If a
comma- or space-separated list of <n> <length>sis provided, then the values represent new
relative X coordinates for the current text position for the first <n> characters within the ‘tspan’
element. Thus, before each character is rendered, the current text position resulting from drawing
the previous character (or, for the first character in a 'text' element, the initial current text

position) is shifted along the X axis of the current user coordinate system by <length>. If more
<length>s are provided than characters, then any extra <length>s will have no effect on glyph
positioning. If more characters exist than <length>s, then the starting X coordinate of each extra
character is positioned at the X coordinate of the resulting current text position from rendering
the previous character within the 'text' element.

CSS unit identifiers, such as cm, pt or %, can be provided for any <length>. If a<length> is
provided without a unit identifier (e.g., 48), then the value represents a length along the X axisin
the current user coordinate system. If one of the CSS unit identifiersis provided (e.g., 12pt or
10%), then the value represents a distance in the viewport coordinate system. (Processing rules
for CSS units and percentages.) The default valueis"0".

Animatable: yes.

dy = "<length>+"

The corresponding list of relative Y coordinates for the characters within the 'tspan’ element. The
default valueis"0".
Animatable: yes.

rotate = "auto | <number>+"

A value of auto causes all characters to be oriented as specified by other text attributes without
any supplemental rotation.

If asingle <number> is provided, then this value represents a supplemental rotation about the
current text position that will be applied to each glyph corresponding to each character within the
'tspan’ element.

If acomma- or space-separated list of <number>sis provided, then the first <number> represents

the supplemental rotation of the first character, the second <number> represents the
supplemental rotation of the second character, and so on. If more <number>s are provided than
there are characters, then the extra <number>s will be ignored. If more characters are provided
than <number>s, then the extra characters will be rotated by the last <number> in the list.

This supplemental rotation has no impact on the rules by which current text position is modified
as glyphs get rendered.

The default value is "auto”.

Animatable: yes (non-additive, 'set' and ‘animate’ elements only).

Attributes defined elsewhere:

%stdAttrs;, %langSpaceAttrs;, %ographi csElementEvents;, YotestAttrs;,
%StylableSV G-StyleAttribute;.

Thex, vy, dx, dy and rotate on the 'tspan’ element are useful in high-end typography scenarios where
individual glyphs requires exact placement. These attributes are useful for minor positioning
adjustments between characters or for major positioning adjustments, such as moving the current text
position to a new location to achieve the visual effect of anew line of text. Multi-line 'text’ elements are
possible by defining different 'tspan’ elements for each line of text, with attributes x, y, dx and/or dy
defining the position of each ‘tspan’. (An advantage of such an approach isthat users will be ableto
perform multi-line text selection.)

In situations where advanced typographic control is required and micro-level positioning adjustment are
necessary, the SV G content designer needs to ensure that the necessary font will be available for al
viewers of the document (e.g., package up the necessary font data in the form of an SVG font or an
alternative web font format which is stored at the same web site as the SV G content) and that the
viewing software will process the font in the expected way (the capabilities, characteristics and font
layout mechanisms vary greatly from system to system). If the SV G content contains x, y, dx or dy
attribute values which are meant to correspond to a particular font processed by a particular set of
viewing software and either of these requirements is not met, then the text might display with poor
quality.

The following additional rules apply to attributes x, y, dx, dy, rotate when they contain alist of numbers:

« Required behavior when multiple XML characters map to asingle glyph (e.g., when aligatureis
used) - Assume that thei-th and (i+1)-th XML characters map to a single glyph. In this case, the
i-th value for the x, y, dx, dy and rotate attributes al apply when rendering the glyph. For the

(i+1)-th values, however, the x, y and rotate value are not applied (although the final rotate value
would still apply to subsequent characters), whereas the dx and dy are applied to the subsequent
XML character (i.e., the (i+2)-th character), if one exists.

« Relationship to right-to-left text and bi-directionality - Text islaid out in a two-step process,
where any right-to-left and bi-directional text isfirst re-ordered into aleft-to-right string, and
then text layout occurs with the re-ordered text string. Whenever the character data within a
'tspan’ element is re-ordered, the corresponding elements within the x, y, dx, dy and rotate are
also re-ordered to maintain the correspondence. For example, suppose that you have the
following ‘tspan’ element:

<tspan dx="11 12 13 14 15 0 21 22 23 0 31 32 33 34 35 36">Ronman and Arabi c

and that the word "Arabic" will be drawn right-to-left. First, the character data and the
corresponding valuesin the dx list will be reordered, such that the text string will be "Roman and
cibarA" and thelist of values for the dx attribute will be"11 12131415021 2223036 35 34

3332 31". After thisre-ordering, the characters will be positioned using standard |eft-to-right
layout rules.

« Nested 'tspan’ elements - The x, y, dx, dy and rotate attributes on a given 'tspan’ element apply

only to the character data that is directly within that ‘tspan’ element and do not apply to the
character data within child (i.e., nested) ‘tspan’ elements. If the child/nested 'tspan’ elements
require positioning adjustments or rotation values, the child/nested 'tspan’ elements need to
specify X, y, dx, dy and rotate values for their own character data.

The following examples show basic use of the 'tspan’ element.

Example tspan01 uses a 'tspan’ el ement to indicate that the word "not" is to use a bold font and have red
fill.

<?xm version="1.0" standal one="no" ?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="10cm' hei ght="3cni' >

<desc>Exanpl e tspan0l - using tspan to change visual attributes</desc>

<g style="font-fanm |ly: Verdana; font-size:12pt">
<text x="2cnm y="1.5cnm style="fill:blue">
You are
<tspan style="font-weight:bold; fill:red">not</tspan>
a banana.
</text>
</ g>
</ svg>

You are not 3 banana,

Example tspan01

View this example as SV G (SV G-enabled browsers only)

Example tspan02 uses the dx and dy attributes on the 'tspan’ to adjust the current text position
horizontally and vertically for particular text strings within a'text' element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="10cm" hei ght="3cni >
<desc>Exanpl e tspan02 - using tspan's dx and dy attributes
for incremental positioning adjustnents</desc>

<g style="font-fanm |y: Verdana; font-size:12pt">
<text x="2cm' y="1.5cn!" style="fill:Dblue">

But you

<t span dx="2ent dy="-.5cni style="font-weight:bold; fill:red">
are
</t span>
<t span dy="1cni >
a peach!

file:///d|/public/svgspec/images/text/tspan01.svg

</t span>

</text>
</ g>
</ svg>
are
But you
a peach!
Example tspan02

View this example as SV G (SV G-enabled browsers only)

Example tspan03 uses the x and y attributes on the 'tspan’ to establish a new absolute current text
position for each glyph to be rendered. The example shows two lines of text within asingle 'text’
element. Because both lines of text are within the same 'text' element, the user will be able to select
through both lines of text and copy the text to the system clipboard in user agents that support text
selection and clipboard operations,

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ \D- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dtd" >
<svg wi dt h="10cn' hei ght ="3cni >
<desc>Exanpl e tspan03 - using tspan's x and y attributes
for nultiline text and precise glyph positioning</desc>

<g style="font-fam |ly: Verdana; font-size:12pt">
<text style="fill:rgb(255, 164, 0)">
<tspan x="3.0cm 3.5cm 4.0cm 4.5cm 5. 5cm 6. 0cm 6. 5¢cn' y="1cni' >
Cute and
</t span>
<tspan x="3.75cm 4.25cm 4. 75cm 5. 25cm 5. 75cnt' y="2cn' >
fuzzy
</t span>
</text>
</ g>
</ svg>

Example tspan03

View this example as SV G (SV G-enabled browsers only)

file:///d|/public/svgspec/images/text/tspan02.svg
file:///d|/public/svgspec/images/text/tspan03.svg

10.5 The 'tref' element

Thetextual content for a'text' can be either character data directly embedded within the 'text’ element or

the character data content of areferenced element, where the referencing is specified with a'tref'
element.

<IENTITY %trefExt "" >
<! ELEMENT tref (aninmte|set|ani mateCol or

%refExt;)* >

<! ATTLI ST tref
st dAttrs;
% angSpaceAttrs;
class % assList; #l MPLI ED
%gr aphi csEl ement Event s;
% est Attrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
X % Coordi nates; #l MPLI ED
y %Coordi nates; #l MPLI ED
dx %.engt hs; #l MPLI ED
dy %.engths; #l MPLI ED
rot at e CDATA #l MPLI ED
Wl i nkRef Attrs;
xlink: href %JRI; #REQUI RED
%St yl abl eSVG Styl eAttri bute;

%ExchangeSVG Fi | | StrokeAttrs;
%ExchangeSVG G aphi csAttrs;
%&EXxchangeSVG Text Cont ai ner Attrs; >

Attribute definitions:
xlink:href = "<uri>"

A URI reference to an element/fragment within an SV G document fragment whose character

data content shall be used as character data for this 'tref' el ement.
Animatable: yes.

Attributes defined elsewhere:

%stdAttrs;, %langSpaceAttrs;, %graphicsElementEvents;, X, v, dx, dy, rotate, %testAttrs;,
%xlinkRefAttrs;, %StylableSV G-StyleAttribute;.

All character data within the referenced element, including character data enclosed within additional
markup, will be rendered.

Thex, y, dx, dy and rotate attributes have the same meanings as for the 'tspan’ element. The attributes

are applied asif the 'tref' element was replaced by a 'tspan’ with the referenced character data (stripped
of all supplemental markup) embedded within the hypothetical ‘'tspan’ element.

Example trefO1 shows how to use character data from a different element as the character datafor a
given 'tspan’ element. Thefirst 'text’ element (with id="ReferencedText") will not draw becauseit is part

of a'defs element. The second 'text’ element draws the string "Inline character data’. The third 'text’

element draws the string "Reference character data’ because it includes a 'tspan’ element which isa
reference to element "ReferencedText", and that element's character datais " Referenced character data’.

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="10cm' hei ght ="3cni' >
<def s>
<text id="ReferencedText">
Ref erenced character data

</text>
</ def s>
<desc>Exanple tref0l1 - inline vs reference text content</desc>
<text x="1cm' y="1cm' style="font-size:12pt; fill:blue">
Inline character data
</text>

<text x="1cm' y="2cm' style="font-size:12pt; fill:red">
<tref xlink:href="#ReferencedText"/>
</text>
</ svg>

Inline character data

referenced character data

Example trefOl1

View this example as SV G (SV G-enabled browsers only)

10.6 Text layout

10.6.1 Text layout introduction

This section describes the text layout features supported by SV G, which includes support for various
international writing directions, such asleft-to-right (e.g., Roman scripts), right-to-left (e.g., Hebrew or
Arabic), bi-directional (e.g., mixing Roman with Arabic) and vertical (e.g., Asian scripts). The
descriptionsin this section assume straight line text (i.e., text that is either strictly horizontal or vertical
with respect to the current user coordinate system). Subsequent sections describe the supplemental

layout rules for text on a path.

Because SV G does not provide for automatic line breaks or word wrapping, internationalized text layout
issimpler in SVG than in languages such as XHTML [XHTML].

In processing agiven 'text' element, the SV G user agent keeps track of the current text position. The
initial current text position is established by the x and y attributes on the 'text' element. The current text

position is adjusted after each glyph to establish a new current text position at which the next glyph shall
be rendered. The adjustment to the current text position is based on the current text advance direction,

the glyph orientation relative to the text advance direction, the metrics of the glyph just rendered,
kerning tables in the font and the current values of various attributes and properties, such as the spacing
properties and any x, y, dx and dy attributes on 'tspan’ elements.

For each glyph to be rendered, the SV G user agent determines an appropriate reference point on the
glyph which will be placed exactly at the current text position. The reference point is determined based

file:///d|/public/svgspec/images/text/tref01.svg

on character cell metricsin the glyph itself, the current text advance direction and the glyph orientation
relative to the text advance direction For the most common uses of Roman text (i.e., ‘writing-mode:lr’,
'text-anchor:start', and 'baseline-identifier:baseline’) the reference point in the glyph will be the

intersection of left edge of the glyph character cell (or some other glyph-specific X axis coordinate
indicating a left-side origin point) with the baseline of the glyph. For most cases with top-to-bottom
vertical text layout, the reference point will be either a glyph-specific origin point for top-to-bottom
vertical text or the intersection of the center of the glyph with itstop line (see [CSS2] for a definition of

top line).

The various text layout diagrams in this section use the following symbols:

Ea

- wide-cell glyph (e.g. Han) which is the n-th character in the text run

b

- narrow-cell glyph (e.g. Roman) which is the n-th glyph in the text run

CA

- connected glyph (e.g. Hebrew or Arabic) which isthe n-th glyph in the text run

The orientation which the above symbols assume in the diagrams corresponds to the orientation that the
glyphs they represent are intended to assume when rendered in the user agent. Spacing between these
charactersin the diagramsis usually symbolic, unless intentionally changed to make a point.

10.6.2 Setting the primary text advance direction

The 'writing-mode' property specifies whether the primary text advance direction for a 'text’ element
shall be left-to-right, right-to-left, or top-to-bottom. The ‘writing-mode' property applies only to 'text’
elements; the property isignored for 'tspan’, 'tref' and 'textPath’ sub-elements. (Note that even when the

primary text advance direction if left-to-right or right-to-left, some or all of the content within agiven
'text’ element might advance in the opposite direction because of the Unicode [UNICODE] bi-directional

algorithm or because of explicit text advance overrides due to properties 'direction’ and 'unicode-bidi’.
For more on bi-directional text, see Relationship with bi-directionality.)

‘writing-mode

Value: Ir-tb | rl-tb | tb-rl | Ir | rl | tb | inherit
Initial: Ir-tb
Appliesto: 'text' elements
Inherited: yes
Percentages: N/A
Media: visua
Animatable: no
Ir-th | Ir

Sets the primary text advance direction to left-to-right, asis common in most Roman-based
documents. For most characters, the current text position is advanced from left to right after each
glyph is rendered. (When the character data includes characters which are subject to the Unicode
bi-directiona algorithm, the text advance rules are more complex. See Relationship with

bi-directionality).

rl-tb | rl
Sets the primary text advance direction to right-to-left, asis common in Arabic or Hebrew
scripts.

tb-rl | tb
Sets the primary text advance direction to top-to-bottom, asis common in Asian scripts. Though
hardly as frequent as horizontal, this type of vertical layout also occursin Latin based

documents, particularly in table column or row labels. In most cases, the vertical baselines
running through the middle of each glyph are aligned.

10.6.3 Glyph orientation within a text run

In some cases, it is required to alter the orientation of a sequence of characters relative to the primary
text advance direction. The requirement is particularly applicable to vertical layouts of East Asian
documents, where sometimes half-width Roman text is to be displayed horizontally and other times
verticaly.

Two properties control the glyph orientation relative to the primary text advance direction.
‘glyph-orientation-vertical' controls glyph orientation when the primary text advance direction is
vertical. ‘'glyph-orientation-horizontal' controls glyph orientation when the primary text advance
direction is horizontal.

‘glyph-orientation-vertical'

Value: <angle> | auto | inherit
Initial: auto
Appliesto: 'text', 'tspan’, 'tref’, 'textPath’ elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: no
<angle>
The value of the angle is a <integer> restricted to the range of -360 to +360 in 90-degree
increments.

A value of O indicates that all glyphs are oriented with the bottom of the glyphs toward the
primary text advance direction, resulting in glyphs which are stacked vertically on top of each
other. A value of 90 indicates arotation of 90 degrees clockwise from the "0" orientation.
Negative angle values are computed modulo 360; thus, a value of -90 is equivalent to a value of
270.

auto

The glyph orientation relative to the primary text advance direction is determined automatically
based on the Unicode character number of the rendered glyph.

Full-width ideographic and full-width Roman glyphs (excluding ideographic punctuation) are
oriented as if an <angle> of "0" had been specified (i.e., glyphs are oriented with the bottom of
the glyphs toward the primary text advance direction, resulting in glyphs which are stacked
vertically on top of each other).

|deographic punctuation and other ideographic characters having alternate horizontal and vertical

forms shall use the vertical form of the glyph.

Text which is not full-width will be set asif an <angle> of "90" had been specified; thus,
half-width Roman text will be rotated 90 degree clockwise versus full-width ideographic and
full-width Roman text.

Note that a value of auto will generally produce the expected results in common uses of mixing
Japanese with European characters; however, the exact algorithms are based on complex
interactions between many factors, including font design, and thus different algorithms might be
employed in different processing environments. For precise control, specify explicit <angle>
values.

The glyph orientation affects the amount that the current text position advances as each glyph is
rendered. When the primary text advance direction is vertical and the 'glyph-orientation-vertical' results
in an orientation angle that is a multiple of 180 degrees, then the current text position is incremented
according to the vertical metrics of the glyph. Otherwise, if the 'glyph-orientation-vertical' resultsin an
orientation angle that is not a multiple of 180 degrees, then the current text position isincremented
according to the horizontal metrics of the glyph.

The diagrams below illustrate different uses of 'glyph-orientation-vertical'. The diagram on the | eft
shows the result of the mixing of full-width ideographic characters with half-width Roman characters
when 'glyph-orientation-vertical' for the Roman characters is either auto or 90. The diagram on the right
show the result of mixing full-width ideographic characters with half-width Roman characters when
Roman characters are specified to have a'glyph-orientation-vertical' of 0.

AN
Flﬁ ST
Fzﬁ Fzé
7l p)] h3 G
e
) e hd
= QL O
b5 |
F?ﬁ
FBE hé d
o Ny,
F?ﬁ
rz | B
” N

‘glyph-orientation-horizontal’

Value: <angle> | inherit

Initial: 0
Appliesto: 'text', 'tspan’, 'tref’, 'textPath’ elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: no
<angle>
The value of the angle is a <integer> restricted to the range of -360 to +360 in 90-degree
increments.

A value of O indicates that all glyphs are oriented with the right edge of the glyphs toward the
primary text advance direction, resulting in glyphs which are positioned side by side. A value of
90 indicates an orientation of 90 degrees clockwise from the "0" orientation. Negative angle
values are computed modulo 360; thus, avaue of -90 is equivalent to a value of 270.

The glyph orientation affects the amount that the current text position advances as each glyph is
rendered. When the primary text advance direction is horizontal and the 'glyph-orientation-horizonta'
resultsin an orientation angle that is a multiple of 180 degrees, then the current text position is
incremented according to the horizontal metrics of the glyph. Otherwise, if the
‘glyph-orientation-vertical' resultsin an orientation angle that is not a multiple of 180 degrees, then the
current text position isincremented according to the vertical metrics of the glyph.

10.6.4 Relationship with bi-directionality

The charactersin certain scripts are written from right to left. In some documents, in particular those
written with the Arabic or Hebrew script, and in some mixed-language contexts, text in asingle line may
appear with mixed directionality. This phenomenon is called bidirectionality, or "bidi" for short.

The Unicode standard ([UNICODE], section 3.11) defines a complex algorithm for determining the
proper directionality of text. The algorithm consists of an implicit part based on character properties, as
well as explicit controls for embeddings and overrides. The SV G user agent applies this bidirectional
algorithm when determining the layout of characters within a'text' element. The 'direction’ and
‘unicode-bidi' properties allow authors to override the inherent directionality of the content characters
and thus explicitly control how the elements and attributes of a document language map to this
algorithm. These two properties are only applicable when the primary text advance direction is
horizontal.

Because the directionality of atext depends on the structure and semantics of the document language, in
most cases these properties will be used only by designers of document type descriptions (DTDs) or
authors of special documents.

A more compl ete discussion of bi-directionality can be found in the "Cascading Style Sheets (CSS) level
2" specification [CSS2].

The processing model for right-to-left or bi-directional horizontal text is as follows. The user agent
processes the characters which are provided in lexical order and re-orders the characters after processing
the Unicode bi-directional algorithm and properties 'direction’ and 'unicode-bidi’, resulting in a
potentially re-ordered list of characters which are now in left-to-right rendering order. Simultaneous
with re-ordering of the characters, the x, y, dx, dy and rotate attributes on the 'tspan’ and 'tref' elements
are also re-ordered to maintain the original correspondence between characters and attribute values.

While kerning or ligature processing might be font-specific, the preferred model is that kerning and
ligature processing occurs between combinations of characters or glyphs after the characters have been
re-ordered. Similarly, text selection occurs on the re-ordered text (i.e., based on visual layout rather than
lexical layout).

When included in a'text’ element whose primary text advance direction is vertical, Arabic text has a

default orientation where the glyphs are rotated 90 degrees counter-clockwise from standard
vertically-oriented glyphs, making the default orientation of the Arabic glyphs the same as for
half-width Roman glyphs.

‘direction’
Value: [tr | rtl | inherit
Initial: Itr
Appliesto: al elements, but see prose
Inherited: yes
Percentages: N/A
Media: visual

Animatable: no

This property specifies the base writing direction of text and the direction of embeddings and overrides
(see'unicode=hidi") for the Unicode bidirectional algorithm. For the 'direction’ property to have any

effect, the 'unicode=hidi' property's value must be 'embed’ or 'override’. Refer to the "Cascading Style
Sheets (CSS) level 2" specification [CSS2] for the specification for this property.

The 'direction’ property applies only to text whose glyph orientation has the right edge of the glyphs
oriented in the same direction as the primary text advance direction, which includes the usual case of
horizontally-oriented Roman or Arabic text and the case of half-width Roman or Arabic characters
rotated 90 degrees clockwise relative to a top-to-bottom primary text advance direction.

"unicode-bidi'

Value: normal | embed | bidi-override | inherit
Initial: normal

Appliesto: &l elements, but see prose

Inherited: no

Percentages: N/A

Media: visual

Animatable: no
Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for the specification for this
property.

10.7 Alignment properties

10.7.1 Text alignment properties

Each text element establishes an initial current text position. The following property is used to align the
contents of a'text' element relative to the current text position.

'text-anchor’
Value: start | middle | end | inherit

Initial: start
Appliesto: 'text' elements

Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

This property, which applies only to 'text' elements and isignored for elements 'tspan’, 'tref' and
'textPath’, describes how the characters within a'text' element are aligned relative to the initial current
text position for the 'text' element. Vaues have the following meanings:

start

The rendered characters are aligned such that the start of the text string is at the initial current
text position. For standard Roman text, thisis comparable to |eft alignment. For Asian text with a
vertical primary text direction, thisis comparable to top alignment.

middle
The rendered characters are aligned such that the middle of the text string is at the current text
position. (For text on a path, conceptually the text string isfirst laid out in astraight line. The
midpoint between the start of the text string and the end of the text string is determined. Then,
the text string is mapped onto the path with this midpoint placed at the current text position.)
end

The rendered characters are aligned such that the end of the text string is at the initial current text
position. For standard Roman text, this is comparable to right alignment.

10.7.2 Baseline alignment properties

One of the characteristics of international text isthat there are different baselines (different alignment
points) for glyphsin different scripts. For example, in horizontal writing, ideographic scripts, such as
Chinese, Japanese and Korean, align the bottoms of the glyphs; al phabetic based scripts, such as Latin,
Cyrillic, Hebrew, Arabic, align a point that is the bottom of most glyphs, but some glyphs descend
below the baseline; and Indic based scripts are aligned at a point that is near the top of the glyphs.

When different scripts are mixed on aline of text, an adjustment must be made to ensure that the glyphs
in the different scripts are aligned relatively correctly with one another. Open Type [OPENTY PE] fonts

have a Basdline table (BASE) [OPENTY PE-BASETABLE] that specifies the offsets of the aternative
baselines from the current baseline.

SVG uses asimilar baseline-table model that assumes one script (at one font-size) is the "dominant run*
during processing of a'text' element; that is, all other baselines are defined in relation to this dominant
run. The baseline of the script with the dominant run is called the dominant baseline. So, for example, if
the dominant baseline is the al phabetic/L atin baseline, there will be offsetsin the baseline-table for the
alternate baselines, such as the ideographic baseline and the Indic baseline. There will also be an offset
for the math baseline which is used for some math fonts. Note that there are separate baseline tables for
horizontal and vertical writing-modes. The offsets in these tables may be different for horizontal and
vertical writing.

The dominant baseline is fixed for an entire 'text' element.

The baseline-table establishes at the start of processing of a'text’ element is called the dominant
baseline-table.

Because the value of the 'font-family' property isalist of fonts, to insure a consistent choice of

baseline-table we define the nominal font in afont list asthe first font in the list for which aglyph datais
available. Thisisthefirst that could contain a glyph for each character encountered. (For this definition,
glyph datais assumed to be present if afont substitution is made or if the font is synthesized.) This
definition insures a content independent determination of the font and baseline table that is to be used.

The value of the 'font-size' property on the 'text' element establishes the dominant baseline-table font
size.

The model assumes that each glyph has a'baseline-identifier' value which specifies the baseline with
which the glyph isto be aligned. (The 'baseline-identifier' is called the "Baseline Tag" in the OpenType
baseline-table description.) Theinitial value of the 'baseline-identifier' property uses the baseline

identifier associated with the given glyph. Alternate values for 'baseline-identifier’ can be useful for
glyphs such asa"*" which are ambiguous with respect to script membership.

The model assumes that the font from which the glyph is drawn also has a baseline table, the font
baseline-table. This baseline table has offsets in units-per-em from the (0,0) point to each of the
baselines the font knows about. In particular, it has the offset from the glyph's (0,0) point to the baseline
identified by the 'baseline-identifier'.

The offset values in the baseline-table are in "design units* which means fractional units of the EM. CSS
calls these "units-per-em" [CSS2-UNITSPEREM)]. Thus, the current 'font-size' is used to determine the

actual offset from the dominant baseline to the alternate baselines.

The glyph isaigned so that its baseline identified by its 'baseline-identifier' is aligned with the baseline
with the same name from the dominant baseline-table.

The offset from the dominant baseline of the parent to the baseline identified by the 'baseline-identifier'
is computed using the dominant baseline-table and dominant baseline-table font-size. The font
baseline-table and font-size applicable to the glyph are used to compute the offset from the identified
baseline to the (0,0) point of the glyph. This second offset is subtracted from the first offset to get the
position of the (0,0) point in the shift direction. Both offsets are computed by multiplying the baseline
value from the baseline-table times the appropriate font-size value.

If the 'baseline-identifier' identifies the dominant baseline, then the first offset is zero and the glyphis
aligned with the dominant baseline; otherwise, the glyph is aligned with the chosen alternate baseline.

The baseline-alignment properties follow.

'"dominant-basaline

Value: auto | autosense-script | no-change | reset|
ideographic | lower | hanging | mathematical | inherit

Initial: auto

Appliesto: 'text' elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes

The 'dominant-baseline' property is used to re-determine the dominant baseline and re-establish the
font-size used with the baseline-table is added. This property can also be used to explicitly set the

dominant baseline when the 'auto’ value would give an incorrect result. Values for the property have the
following meaning:

auto

If this property occurs on a'text' element, the dominant-baseline is set using the rules for

‘autosense-script' below. Otherwise, the dominant baseline and the baseline-table remain the
same as that of the parent. If the 'baseline-shift' value actually shifts the baseline, then the
baseline-table font-size is set to the current 'font-size', otherwise the baseline-table font-size
remains the same as that of the parent. If there is no parent, the dominant-baseline is set to be the
'lower' baseline, the baseline-table is set for that baseline and the baseline-table font-sizeis set to
the current 'font-size'.

autosense-script
The dominant baseline and the baseline-table are set as follows. Use the first character
descendant([, after any re-ordering due to character direction and bi-directionality,] which has an

unambiguous script identifier to determine the dominant script of the element's content. Using
the nominal font for the element, set the 'dominant-baseline' (and, correspondingly, the dominant
baseline-table) to the default baseline, in the current writing-mode, for the dominant script. I
there is no such character, then set the ‘alphabetic’ baseline as the dominant-baseline.

no-change
The dominant basdline, the baseline-table and the basealine-tabl e font-size remain the same as that
of the parent.

reset-size
The dominant baseline and the baseline table remain the same, but the baseline-table font-sizeis
changed to the value of the 'font-size' property on this element. This re-scales the baseline table
for the current 'font-size'.

ideographic

The dominant baseline is set to the 'ideographic’ baseline using the baseline-table and
baseline-table font-size of the parent, the baseline table is changed to correspond to the
'ideographic' baseline, and the baseline-table font-size is changed to the value of the ‘font-size'
property on this element.

hanging
The dominant baseline is set to the 'hanging' baseline using the baseline-table and baseline-table

font-size of the parent, the baseline table is changed to correspond to the 'hanging' baseline, and
the baseline-table font-size is changed to the value of the 'font-size' property on this element.

lower

The dominant baseline is set to the 'lower' baseline using the baseline-table and baseline-table
font-size of the parent, the baseline table is changed to correspond to the 'lower' baseline, and the
baseline-table font-size is changed to the value of the ‘font-size' property on this element. (The
'lower' baseline is the standard baseline for Roman scripts.)

mathematical

The dominant baseline is set to the 'mathematical’ baseline using the baseline-table and
baseline-table font-size of the parent, the baseline table is changed to correspond to the
'mathematical’ baseline, and the baseline-table font-size is changed to the value of the font-size
property on this element.

If there is no baseline-table in the nominal font or if the baseline-table lacks an entry for the desired
baseline, then the User Agent may use heuristics to determine the position of the desired baseline.

‘baseline-identifier’
Value: baseline | top | before-edge | text-top | text-before-edge |
middle | bottom | after-edge | text-bottom | text-after-edge |
ideographic | lower | hanging | mathematical | inherit

Initial: see text below

Appliesto: 'text', 'tspan’, 'tref’, 'textPath’ elements
Inherited: no

Percentages. N/A

Media: visual

Animatable: yes

For SVG, theinitial valueis the dominant baseline of the nominal font for the first character in the 'text'
element [after any re-ordering due to character direction and bi-directionality].

For the values below, the alignment-point defaults to the baseline with the same name as the value. That
is, for the value 'ideographic’ the alignment-point is the 'ideographic' baseline of the object being
aligned. Values have the following meanings:

baseline
The alignment-point of the object being aligned is aligned with the dominant baseline of the
parent.

top

The alignment point of the box is aligned with the 'top' baseline of the parent.

before-edge

The alignment point of the box is aligned with the 'before-edge’ baseline of the parent. [The
'before-edge’ is the relative equivalent of 'top'. 'before-edge’ works for both horizontal and
vertical writing-modes. Thus, for common horizontal writing-modes, 'before-edge’ is the same as
'top’ and, for vertical writing modes, 'before-edge’ is equivalent to ‘right’ for 'TB-RL'
writing-mode and to 'left’ for TB-LR' writing-mode.]

text-top

The alignment-point of the object being aligned is aligned with the 'text-top’ baseline of the
parent.

text-befor e-edge

The alignment-point of the object being aligned is aligned with the 'text-before-edge’ baseline of
the parent. [The 'text-before-edge' is the relative equivalent of 'text-top'. ‘text-before-edge’ works
for both horizontal and vertical writing-modes.]

bottom
The alignment point of the box is aligned with the 'bottom' baseline of the parent.
after-edge

The alignment point of the box is aligned with the 'after-edge’ baseline of the parent. [The
‘after-edge’ isthe relative equivalent of 'bottom'. "after-edge’ works for both horizontal and
vertical writing-modes.]

text-bottom
The alignment-point of the object being aligned is aligned with the 'text-bottom' baseline of the

parent.
text-after-edge

The alignment-point of the object being aligned is aligned with the 'text-after-edge’ baseline of
the parent. [The 'text-after-edge' is the relative equivalent of 'text-bottom'. 'text-after-edge’ works
for both horizontal and vertical writing-modes.]

middle

The alignment point of the box is aligned with the midpoint of the EM box of the nominal font
when that EM box is positioned on the dominant baseline.

ideographic
The alignment-point of the object being aligned is aligned with the ideographic baseline of the
parent.

alphabetic

The alignment-point of the object being aligned is aligned with the al phabetic baseline of the
parent.

hanging
The alignment-point of the object being aligned is aligned with the hanging baseline of the
parent.

mathematical

The alignment-point of the object being aligned is aligned with the mathematical baseline of the
parent.

The offset of the 'text-top' baseline is determined by the ascent of the nominal font relative to the
dominant baseline multiplied by the computed value of the 'font-size' property. The ascent is measured
in units-per-em The determination of the 'text-before-edge’, 'text-bottom' and 'text-after-edge’ baseline
offsets is analogous; the descent of the nominal font is used for 'text-bottom' and 'text-after-edge'.

‘baseline-shift'
Value: baseline | sub | super | <percentage> | <length> | inherit
Initial: baseline
Appliesto: 'text', 'tspan’, 'tref’ and 'textPath’ elements
Inherited: no

Percentages. refersto the'line-height' of the 'text' element, which in the case of SVG is defined
to be equal to the 'font-size

Media: visual

Animatable: yes (non-additive, 'set' and 'animate’ elements only)

The 'baseline-shift' property allows repositioning of the dominant-baseline relative to the
dominant-baseline of the 'text' element. The shifted object might be a sub- or superscript. Within the

shifted object, the whole baseline table is offset; not just a single baseline. The amount of the shift is
determined from information from the parent, the sub- or superscript offset from the nominal font of the
parent, percent of the 'line-height’ of the parent or an absolute value.
Values for the property have the following meaning:
baseline

There is no baseline shift; the dominant baseline remains whereit is.

sub

The dominant baseline is shifted to the default position for subscripts. The offset to this position
is determined by the font data for the nominal font as adjusted by the dominant baseline-table
font-size.

super

The dominant baseline is shifted to the default position for superscripts. The offset to this
position is determined by the font data for the nominal font as adjusted by the dominant
baseline-table font-size.

<per centage>

The computed value of the property is this percentage multiplied by the computed 'line-height’ of
the 'text' element. A value of '0%' is equivalent to 'baseline’.

<length>

The dominant baseline is shifted by the <length> value. A value of 'Ocm'’ is equivalent to
‘baseline.

10.8 Font selection properties

SV G uses the following font specification properties from CSS2. Any SV G-specific notes about these
properties are contained in the descriptions below.

‘font-family’

Value: [[<family-name> |
<generic-family>1,]* [<family-name> |
<generic-family>] | inherit

Initial: depends on user agent

Appliesto: al elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

This property indicates which font family is to be used to render the text, specified as a prioritized list of
font family names and/or generic family names. Refer to the " Cascading Style Sheets (CSS) level 2"
specification [CSS2] for more information about this property.

‘font-style’
Value: normal | italic | oblique | inherit
Initial: normal
Appliesto: &l elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

This property specifies whether the text is to be rendered using anormal, italic or oblique face. Refer to
the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for more information about this

property.
'font-variant'

Value:
Initial:
Appliesto:
Inherited:
Percentages:
Media;
Animatable:

normal | small-caps | inherit
normal

all elements

yes

N/A

visual

yes

This property indicates whether the text is to be rendered using the normal glyphs for lowercase
characters or using small-caps glyphs for lowercase characters. Refer to the " Cascading Style Sheets
(CSS) level 2" specification [CSS2] for more information about this property.

‘font-weight'
Value:

Initial:
Appliesto:
Inherited:
Percentages:
Media:
Animatable:

normal | bold | bolder | lighter | 100 | 200 | 300
| 400 | 500 | 600 | 700 | 800 | 900 | inherit
normal

all elements

yes

N/A

visual

yes

This property refers to the boldness or lightness of the glyphs used to render the text, relative to other
fonts in the same font family. Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2]

for more information about this property.

'font-stretch’
Value:

Initial:
Appliesto:
Inherited:
Percentages:
Media:
Animatable:

normal | wider | narrower |
ultra-condensed | extra-condensed |
condensed | semi-condensed |
semi-expanded | expanded |
extra-expanded | ultra-expanded | inherit
normal

all elements

yes

N/A

visual

yes

This property indicates the desired amount of condensing or expansion in the glyphs used to render the
text. Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for more information

about this property.
‘font-size
Value:

Initial:
Appliesto:
Inherited:
Percentages.
Media:
Animatable:

<absolute-size> | <relative-size> |
<length> | <percentage> | inherit
medium

all elements

yes, the computed value is inherited
refer to parent element's font size
visual

yes

This property refers to the size of the font from baseline to baseline when multiple lines of text are set
solid in amultiline layout environment. For SV G, if a<length> is provided without a unit identifier
(e.g., an unqualified number such as 128), the SV G user agent processes the <length> as a height value
in the current user coordinate system.

If a<length> is provided with one of the CSS unit identifiers (e.g., 12pt or 10%), then the SV G user

agent converts the <length> into a corresponding value in the current user coordinate system by
applying the processing rules for CSS units and percentages. Refer to the " Cascading Style Sheets (CSS)

level 2" specification [CSS2] for more information about this property.

‘font-size-adjust’

Value: <number> | none | inherit
Initial: none

Appliesto: &l elements

Inherited: yes

Percentages. N/A

Media: visual

Animatable: yes (non-additive, 'set’ and ‘animate’ el ements only)

This property allows authors to specify an aspect value for an element that will preserve the x-height of
the first choice font in a substitute font. Refer to the " Cascading Style Sheets (CSS) level 2"
specification [CSS2] for more information about this property.

‘font’

Value: [[<'font-style> || <'font-variant’> || <'font-weight'>]?
<'font-size’> [/ <line-height'>]? <'font-family>] |
caption | icon | menu | message-box|
small-caption | status-bar | inherit

Initial: seeindividual properties

Appliesto: al elements

Inherited: yes

Percentages: allowed on ‘font-size' and 'line-height’
Media: visual

Animatable: yes (non-additive, 'set' and ‘animate’ elements only)

Shorthand property for setting ‘font-styl€e', ‘font-variant', ‘font-weight', 'font-size', 'line-height' and
‘font-family'. The 'line-height' property has no visual effect in SVG. Conforming SVG Viewers are not
required to support the various system font options (caption, icon, menu, message-box, small-caption
and status-bar) and can use a system font or one of the generic fonts instead.

Refer to the " Cascading Style Sheets (CSS) level 2" specification [CSS2] for more information about
this property.

10.9 Spacing properties

'letter-spacing'
Value: normal | <length> | inherit
Initial: normal

Appliesto: &l elements
Inherited: yes

Percentages. N/A
Media: visual
Animatable: yes

This property specifies spacing behavior between text characters. For SVG, if a<length> is provided
without aunit identifier (e.g., an unqualified number such as 128), the SV G user agent processes the
<length> as awidth value in the current user coordinate system.

If a<length> is provided with one of the CSS unit identifiers (e.g., .25em or 1%), then the SV G user

agent converts the <length> into a corresponding value in the current user coordinate system by
applying the processing rules for CSS units and percentages. Refer to the "Cascading Style Sheets (CSS)

level 2" specification [CSS2] for more information about this property.

‘wor d-spacing'

Value: normal | <length> | inherit
Initial: normal

Appliesto: al elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

This property specifies spacing behavior between words. For SVG, if a<length> is provided without a
unit identifier (e.g., an unqualified number such as 128), the SV G user agent processes the <length> as a
width value in the current user coordinate system.

If a<length> is provided with one of the CSS unit identifiers (e.g., .25em or 1%), then the SV G user

agent converts the <length> into a corresponding value in the current user coordinate system by
applying the processing rules for CSS units and percentages. Refer to the " Cascading Style Sheets (CSS)
level 2" specification [CSS2] for more information about this property.

10.10 Text decoration

'text-decor ation'

Value: none | [underline || overline || line-through || blink] | inherit
Initial: none

Appliesto: all elements

Inherited: No (See prose)

Percentages: N/A

Media: visual

Animatable: yes

This property describes decorations that are added to the text of an element. Conforming SVG Viewers

are not required to support the blink value. Refer to the " Cascading Style Sheets (CSS) level 2"
specification [CSS2] for more information about this property.

10.11 Text on a path

10.11.1 Introduction to text on a path

In addition to text drawn in a straight line, SV G also includes the ability to place text along the shape of
a'path’ element. To specify that a block of text isto be rendered along the shape of a'path’, include the

given text within a 'textPath' element which includes an xlink:href attribute with a URI reference to a
'path’ element.

10.11.2 The 'textPath' element

<IENTITY % textPathExt "" >
<! ELEMENT text Path (#PCDATA|tspan|tref]|altd yph|alanimate|set|ani mateCol or

% ext Pat hExt;)* >
<! ATTLI ST textPath

st dAttrs;

% angSpaceAttrs;

class % assList; #l MPLI ED

%gr aphi csEl enent Event s;

% est Attrs;

ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
start O f set CDATA "O0"

Wl i nkRef Attrs;

xlink:href %JRI; #REQUI RED

%St yl abl eSVG Styl eAttri bute;

%ExchangeSVG Fi | | StrokeAttrs;
%EXxchangeSVG Graphi csAttrs;
%ExchangeSVG Text Cont ai ner Attrs; >

Attribute definitions:
startOffset = "<length> | <percentage>"

An offset from the start of the 'path’ for the initial current text position, calculated using the user
agent's distance along the path algorithm. If a <length> without a percentage is given, then the

startOffset represents a distance along the path measured in the current user coordinate system.
If a<percentage> is given, then the startOffset represents a percentage distance along the entire

path. Thus, startOffset="0%" indicates the start point of the 'path’ and startOffset="100%"
indicates the end point of the 'path'.
Animatable: yes.

xlink:href = "<uri>"

A URI reference to the 'path’ element onto which the glyphs will be rendered. If <uri>isan
invalid reference (e.g., no such element exists, or the referenced element is not a 'path'), then the
'textPath’ element isin error and its entire contents shall not be rendered by the user agent.
Animatable: yes.

Attributes defined elsewhere:

%stdAttrs;, %langSpaceAttrs;, %ographi csElementEvents;, %otestAttrs;, %oxlinkRef Attrs;,
%StylableSV G-StyleAttribute;.

Example toap01 provides a ssmple example of text on a path:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="10cn' hei ght ="3cn vi ewBox="0 0 1000 300" >

<def s>
<pat h i d="MPat h"
d="M 100 200
C 200 100 300 0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />
</ def s>

<desc>Exanpl e toap0l - sinple text on a path</desc>

<use xlink: href="#M/Path" styl e="stroke:red" />
<text style="font-fam |ly:Verdana; font-size:42.3333; fill:blue">
<t ext Pat h xlink: href ="#M/Pat h" >
We go up, then we go down, then up again
</t ext Pat h>

</text>
</ svg>
o2 Y i
A Y
ﬁ -
%, :”93?
Example toap01

View this example as SV G (SV G-enabled browsers only)

Example toap02 shows how 'tspan' elements can be included within 'textPath' elements to adjust styling

attributes and adjust the current text position before rendering a particular glyph. The first occurrence of
the word "up" isfilled with the color red. Attribute dy is used to lift the word "up" from the baseline.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="10cn' hei ght ="3cn vi ewBox="0 0 1000 300" >

<def s>
<pat h i d="MPat h"
d="M 100 200
C 200 100 300 0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />
</ def s>

<desc>Exanpl e toap02 - tspan w thin textPath</desc>

<use xlink:href="#WPath" style="fill:none; stroke:red" />
<text style="font-fam |ly:Verdana; font-size:42.3333; fill:blue">
<t ext Pat h xlink: href ="#M/Pat h" >
W go
<tspan dy="30" style="fill:red">
up
</t span>

<t span dy="-30">

</t span>

file:///d|/public/svgspec/images/text/toap01.svg

then we go down, then up again
</t ext Pat h>
</text>
</ svg>

o9 then

w A
P
X oW
Ty _L‘;ﬁ?

Example toap02

View this example as SV G (SV G-enabled browsers only)

Exampl e toap03 demonstrates the use of the startOffset attribute on the 'textPath’ element to specify the
start position of the text string as a particular position along the path. Notice that glyphs that fall off the
end of the path are not rendered (see text on a path layout rules).

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="10cm' hei ght="3cn' vi ewBox="0 0 1000 300" >

<def s>
<pat h id="MyPath"
d="M 100 200
C 200 100 300 0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />
</ def s>

<desc>Exanpl e t0ap03 - text on a path with startOffset attribute</desc>

<use xlink:href="#MWPath" style="fill:none; stroke:red" />
<text style="font-family:Verdana; font-size:42. 3333; fill:blue">
<textPath xlink: href="#MWPath" startOfset="80% >
We go up, then we go down, then up again
</t ext Pat h>

</text>
</ svg>
-~ . @j wif
yd 3
S e
Example toap03

View this example as SV G (SV G-enabled browsers only)

file:///d|/public/svgspec/images/text/toap02.svg
file:///d|/public/svgspec/images/text/toap03.svg

10.11.3 Text on a path layout rules

Example toap04 will be used to illustrate the particular layout rules for text on a path that supplement
the basic text layout rules for straight line horizontal or vertical text.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="10cm' hei ght="3cm' vi ewBox="0 0 1000 300" >

<def s>
<pat h id="MPat h"
d="M 100 100
C 150 100 250 200 300 200
C 350 200 450 100 500 100
C 550 100 650 200 700 200
C 750 200 850 100 900 100" />
</ def s>

<desc>Exanpl e toap04 = text on a path layout rul es</desc>

<use xlink:href="#MWPath" style="fill:none; stroke:red" />
<text style="font-fam |ly:Verdana; font-size:63.5; fill:blue">
<t ext Pat h xli nk: hr ef =" #M/Pat h" >
Choose shane or get war
</t ext Pat h>

</text>
</ svg>
CjP =Wy
4 {? - f: iﬁ”"
G@a_@& QEE_ _:ﬁiﬁ
Example toap04

View this example as SV G (SV G-enabled browsers only)

The following picture does an initial zoom in on the first glyph in the 'text’ element.

Vo

The small dot above shows the point at which the glyph is attached to the path. The box around the
glyph shows the glyph is rotated such that its horizontal axisis parallel to the tangent of the curve at the
point at which the glyph is attached to the path. The box also shows the glyph's charwidth (i.e., the
amount which the current text position advances horizontally when the glyph is drawn using horizontal
text layout).

The next picture zoomsin further to demonstrate the detailed layout rules.

file:///d|/public/svgspec/images/text/toap04.svg

-

For horizontal text layout along a path, the layout rules are as follows:

Determine the startpoint-on-the-path for the first glyph using attribute startOffset and, if present,
the dx attribute on a'tspan’ element. (In the picture above, the startpoint-on-the-path is the
leftmost dot on the path.)

Determine the glyph's charwidth (i.e., the amount which the current text position advances

horizontally when the glyph is drawn using horizontal text layout). (In the picture above, the
charwidth is the distance between the two dots at the side of the box.)

Determine the point on the curve which is charwidth distance aong the path from the
startpoint-on-the-path for this glyph, calculated using the user agent's distance along the path
algorithm. This point is the endpoint-on-the-path for the glyph. (In the picture above, the
endpoint-on-the-path for the glyph is the rightmost dot on the path.)

Determine the midpoint-on-the-path, which is the point on the path which is "halfway" (user
agents can choose either a distance calculation or a parametric calculation) between the
startpoint-on-the-path and the endpoint-on-the-path. (In the picture above, the
midpoint-on-the-path is shown as awhite dot.)

Determine the glyph-midline, which is the vertical line in the glyph's coordinate system that goes
through the glyph's x-axis midpoint. (In the picture above, the glyph-midline is shown as a
dashed line.)

Position the glyph such that the glyph-midline passes through the midpoint-on-the-path and is
perpendicular to the line through the startpoint-on-the-path and the endpoint-on-the-path.

Align the glyph vertically relative to the midpoint-on-the-path based on property
‘baseline-identifier' and any specified values for attribute dy on a'tspan’ element. In the example
above, the 'baseline-identifier' property is unspecified, so theinitial value of
‘baseline-identifier:baseline will be used. There are no 'tspan’ elements; thus, the baseline of the
glyph is aligned to the midpoint-on-the-path.

For each subsequent glyph, set a new startpoint-on-the-path as the previous

endpoint-on-the-path, but with appropriate adjustments taking into account kerning tables in the
font and current values of various attributes and properties, including spacing properties and

'tspan’ elements with values provided for attributes dx and dy. All adjustments are calculated as
distance adjustments along the path, calculated using the user agent's distance along the path
algorithm.

Glyphs whose midpoint-on-the-path are off the end of the path are not rendered.
Continue rendering glyphs until there are no more glyphs.

In the calculations above, if either the startpoint-on-the-path or the endpoint-on-the-path is off the end of
the path, then extend the path beyond its end points with a straight line that is parallel to the tangent at
the path at its end point so that the midpoint-on-the-path can still be calculated.

For 'tspan’ elements that are children of 'textPath’ elements, x and y attributes on 'tspan’ elements have
no effect on text layout.

Vertical, right-to-left and bi-directional text layout rules also apply to text on a path. Conceptually, the

target path is stretched out into either a horizontal or vertical straight line segment. For horizontal text
layout flows, the path is stretched out into a hypothetical horizontal line segment such that the start of
the path is mapped to the left of the line segment. For vertical text layout flows, the path is stretched out
into a hypothetical vertical line segment such that the start of the path is mapped to the top of the line
segment. The standard text |ayout rules are applied to the hypothetical straight line segment and the
result is mapped back onto the target path.

10.12 Alternate glyphs

There are situations such as ligatures, specia-purpose fonts (e.g., afont for music symbols) or alternate
glyphsfor Asian text strings where it is required that a different glyph is used than the glyph which
normally corresponds to the given character data. Also, The W3C Character Model [CHARMQOD)]

encourages creators of XML to normalize character data to facilitate meaningful exchange of character
data and to promote correct comparisons between character strings. This normalization potentially loses
some information about which specific glyph is required to achieve a particular visual result.

The 'altGlyph' element provides control over the glyphs used to render particular character data.

<IENTITY % al t d yphExt "" >
<! ELEMENT al td yph (#PCDATA %l t d yphExt;)* >
<! ATTLI ST altd yph
YstdAttrs;
% angSpaceAttrs;
YiestAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
Ul i nkRef Attrs;
xlink:href %JRI; #REQU RED >

Attribute definitions:
xlink:href = "<uri>"

A URI reference either to a'glyph’ element in an SV G document fragment or to a'altGlyphDef'
element. If the referenceisto a'glyph' element, then that glyph is rendered instead of the
character(s) that are inside of the 'altGlyph' element. If the reference isto a'altGlyphDef
element, then if an appropriate alternate glyph is located from processing the ‘atGlyphDef’
element, then that aternate glyph is rendered the that glyph is rendered instead of the
character(s) that are inside of the 'altGlyph' element. If the reference does not result in successful
identification of an alternate glyph to use, then the character(s) that are inside of the 'atGlyph'
element are rendered.

Animatable: no.

Attributes defined elsewhere:
%ostdAttrs;, YoxlinkRefAttrs;.

The 'altGlyphDef' element defines alist of possible glyph substitutions which can be referenced from an
‘atGlyph' element. Each possible glyph substitution is defined by a'glyphSub' child element. The first

'glyphSub’ element which locates a substitute glyph will be applied.

<IENTITY % al td yphDef Ext "" >
< ELEMENT altd yphDef (glyphSub %altd yphDef Ext;)* >

<! ATTLI ST al t A yphDef
Y%stdAttrs; >

Attributes defined elsewhere:
%ostdAttrs;, YoxlinkRefAttrs;.

The 'glyphSub’ element defines a possible glyph substitution, consisting of afont name, aglyph
identifier and afont format.

<! ELEMENT gl yphSub EMPTY >
<! ATTLI ST gl yphSub
st dAttrs;
font CDATA #REQUI RED
gl yphRef CDATA #REQUI RED
format CDATA #REQUI RED >

Attribute definitions:
font-family = "<string>"

The identifier for asingle font which might contain the substitute glyph. The <string> can
contain any single font family name value asis allowed in [CSS2].

Animatable: no.

glyphRef = "<string>"
The glyph identifier, the format of which is dependent on the format of the given font.
Animatable: no.

format = "<string>"

The format of the given font. If the font isin one of the formats listed in the [CSS2] specification

(e.g., TrueDoc™ Portable Font Resource or Embedded OpenType), then the <string> must
contain the corresponding font format string defined in the [CSS2] specification (e.g.,

truedoc-pfr or embedded-opentype).
Animatable: no.

Attributes defined elsewhere:
%%ostdAttrs;.

10.13 White space handling

SV G supports the standard XML attribute xml: space to specify the handling of white space characters
within agiven 'text' element's character data. xml:space is an inheritable attribute which can have one
of two values:

« default (theinitial/default value for xml:space) - When xm : space="defaul t",theSVG
user agent will do the following. First, it will remove al carriage return and linefeed characters.

Then it will convert all tab characters into space characters. Then, it will strip off all leading and
trailing space characters. Then, all contiguous space characters will be consolidated.

o preserve- Whenxmnl : space="preserve", the SVG user agent will do the following. It
will convert al carriage returns, linefeeds and tab characters into space characters. Then, it will
draw al space characters, including leading, trailing and multiple contiguous space characters.
Thus, when drawn with xml : space="pr eserve" , thestring"a b" (three spaces
between "a" and "b") will produce alarger separation between "a" and "b" than"a b" (one
space between "a" and "b").

The following examplesillustrate that line indentation can be important when using

xm : space="def aul t " . The fragments below show two pairs of equivalent 'text' elements. Each
pair consists of two equivalent 'text' elements, with the first 'text’ element using xml:space="default’ and
the second using xml:space="preserve'. For these examples, there is no extra white space at the end of
any of thelines (i.e., the line break occursimmediately after the last visible character).

[01] <text xm:space='default'>

[02] W5 exanpl e

[03] indented |ines

[04] </text>

[05] <text xnl:space='preserve' >W5 exanpl e i ndented |ines</text>
[06]

[07] <text xm:space='default'>

[08] W exanpl e

[09] non-i ndented |ines

[10] </text>

[11] <text xml:space='preserve' >W5 exanpl enon-i ndented |ines</text>

Thefirst pair of ‘text' elements above show the effect of indented character data. The attribute
xml:space="default’ in the first 'text' element instructs the user agent to:

« convert all tabs (if any) to space characters,

« strip out al line breaks (i.e., strip out the line breaks at the end of lines [01], [02] and [03]),

« strip out all leading space characters (i.e., strip out space characters before "WS exampl€" on line
[02]),

« strip out all trailing space characters (i.e., strip out space characters before "</text>" on line
[04]),

« consolidate all intermediate space characters (i.e., the space characters before "indented lines' on
line [03]) into a single space character.
The second pair of 'text' elements above show the effect of indented character data. The attribute
xml:space="default’ in the third 'text' element instructs the user agent to:
« convert all tabs (if any) to space characters,
« strip out al line breaks (i.e., strip out the line breaks at the end of lines [07], [08] and [09]),
« strip out all leading space characters (there are no leading space characters in this example),

« strip out all trailing space characters (i.e., strip out space characters before "</text>" on line
[10]),

« consolidate all intermediate space characters into a single space character (in this example, there
are not intermediate space characters).

The xml:space attribute is:

Animatable: no.

10.14 Text selection and clipboard operations

Conforming SV G viewers on systems which have the capacity for text selection (e.g., systems which are

equipped with a pointer device such as a mouse) and which have system clipboards for copy/paste
operations are required to support:

« user selection of text stringsin SV G content
« theability to copy selected text strings to the system clipboard

A text selection operation starts when all of the following occur:

« the user positions the pointing device over a glyph that has been rendered as part of a 'text’

element, initiates a select operation (e.g., pressing the standard system mouse button for select
operations) and then moves the pointing device while continuing the select operation (e.g.,
continuing to press the standard system mouse button for select operations)

« No other visible graphics element has been painted above the glyph at the point at which the
pointing device was clicked

« no links or events have been assigned to the 'text’ , 'tspan’ or 'textPath’ , element(s) (or their
ancestors) associated with the given glyph.

Asthe text selection operation proceeds (e.g., the user continues to press the given mouse button), all
associated events with other graphics elements are ignored (i.e., the text selection operation is modal)
and the SV G user agent shall dynamically indicate which characters are selected by an appropriate
highlighting technique, such as redrawing the selected glyphs with inverse colors. Asthe pointer is
moved during the text selection process, the end glyph for the text selection operation is the glyph within
the same 'text’ element whose character cell is closest to the pointer. All characters within the 'text’
element whose position within the 'text’ element is between the start of selection and end of selection

shall be highlighted, regardless of position on the canvas and regardless of any graphics elements that
might be above the end of selection point.

Once the text selection operation ends (e.g., the user releases the given mouse button), the selected text
will stay highlighted until an event occurs which cancels text selection, such as a pointer device
activation event (e.g., pressing a mouse button).

Detailed rules for determining which characters to highlight during a text selection operation are
provided in Text selection implementation notes.

For systems which have system clipboards, the SV G user agent is required to provide a user interface for
initiating a copy of the currently selected text to the system clipboard. It is sufficient for the SVG user
agent to post the selected text string in the system's appropriate clipboard format for plain text, but
preferableif the SVG user agent also posts arich text alternative which captures the various font

properties associated with the given text string.

For bi-directional text, the user agent must support text selection in lexical order, which will result in
discontinuous highlighting of glyphs due to the bi-directional reordering of characters. User agents can
provide an alternative ability to select bi-directional text in visual rendering order (i.e., after
bi-directional text layout algorithms have been applied), with the result that selected character data
might be discontinous lexically. In this case, if the user requests that bi-directional text be copied to the
clipboard, then the user agent is required to make appropriate adjustments to copy only the visualy
selected charactersto the clipboard.

When feasible, it is recommended that generators of SV G attempt to order their text strings to facilitate
properly ordered text selection within SV G viewing applications such as Web browsers.

10.15 DOM interfaces

The following interfaces are defined below: SV GTextContentElement, SV GTextElement,
SV GTextPositioningElement, SV GT SpanElement, SV GTRefElement, SV GTextPathElement,

SV GAItGlyphElement, SV GAItGlyphDefElement, SV GGlyphSubElement.

Interface SVGTextContentElement

The SV GTextContentElement interface is inherited by various text-related interfaces, such as
SVGTextElement, SVGT SpanElement, SVGTRefElement and SV GTextPathElement.

IDL Definition

i nterface SVGIext ContentEl enent : SVGEl enent, SVG.angSpace, SVGlests, Event Target {

#i

#endi f

#i

attribute DOVBtring cl assNane;

fdef STYLABLESVG

/1 The follow ng pre-defined attribute collections are only
/] available in the DOM for Stylable SVG
STYLABLESVGSt yl eAttri bute;

STYLABLESVG

f def EXCHANGESVG

/1 The follow ng pre-defined attribute collections are only
/] available in the DOM for Exchange SVG

EXCHANGESVGFi | | StrokeAttrs;

EXCHANCGESVGGr aphi csAttrs;

EXCHANGESVGText Cont ai ner Attrs;

#endi f EXCHANGESVG
| ong get Nunber O Chars ();
fl oat getlLength ();
fl oat get SubStringLength (in unsigned long charnum in unsigned |ong nchars)
rai ses(DOVException, SVGException);
SVGPoi nt get StartPositionOf Char (in unsigned | ong charnum)
rai ses(DOVException);
SVGPoi nt get EndPosi ti onOf Char (in unsigned | ong charnum)
rai ses(DOVException);
SVGRect getExtentOf Char (in unsigned | ong charnum)
rai ses(DOVException);
fl oat get Rotati onOf Char (in unsigned | ong charnum)
rai ses(DOVException);
| ong get Char NumAt Position (in SVGPoint point)
rai ses(SVGException);
voi d sel ect SubString (in unsigned |long charnum in unsigned | ong nchars)
rai ses(DOVException);
b
Attributes

DOM String className
Corresponds to attribute class on the given element.

Methods

getNumberOfChars

Returns the total number of characters to be rendered within the current element. Includes
characters which are included via a'tref' reference.

No Parameters
Return value

long Total number of characters.

No Exceptions

getLength

Thetotal distance in the primary text advance direction (or along the text path, if using
text-on-a-path) necessary to render all of the characters within the current element. For
non-rendering environments, the user agent shall make reasonable assumptions about
glyph metrics.

No Parameters
Return value

float The text advance distance.
No Exceptions

getSubStringL ength

Thetotal distance in the primary text advance direction (or along the text path, if using
text-on-a-path) necessary to render the specified substring of the characters within the
current element. For non-rendering environments, the user agent shall make reasonable
assumptions about glyph metrics.

Parameters

in unsigned long charnum The index of the first character in the substring. (The
first character has an index of 1.)

inunsigned long nchars The number of characters in the substring.
Return value

float The text advance distance.
Exceptions

DOMException INDEX_SIZE ERR: Raised if the charnum is out of range.

SVGException SVG_WRONG _TYPE ERR: Raised if one of the parametersis
of the wrong type.

getStartPositionOf Char

Returns the start position (i.e., the current text position at the start of rendering the
character) in the user coordinate system for rendering the glyph(s) that correspond to the
specified character.

Parameters

inunsigned long charnum The index of the character. (Thefirst character has an
index of 1.)

Return value
SVGPoint The character's start position.
Exceptions
DOMException INDEX_SIZE _ERR: Raised if the charnum is out of range.

getEndPositionOf Char

Returns the end position (i.e., the current text position at the end of rendering the
character) in the user coordinate system for rendering the glyph(s) that correspond to the
specified character.

Parameters

inunsigned long charnum The index of the character. (Thefirst character has an
index of 1.)

Return value
SVGPoint The character's end position.
Exceptions
DOMException INDEX_SIZE _ERR: Raised if the charnum is out of range.

getExtentOf Char

Returns atightest rectangle which defines the minimum and maximum X and Y valuesin
the user coordinate system for rendering the glyph(s) that correspond to the specified
character. The calculations assume that all glyphs occupy the full standard character cell

for the font.
Parameters
in unsigned long charnum The index of the character. (The first character has an
index of 1.)
Return value

SVGRect The rectangle which encloses al of the rendered glyph(s).
Exceptions
DOMException INDEX_SIZE ERR: Raised if the charnum is out of range.

getRotationOf Char

Returns the rotation value relative to the current user coordinate system used to render the
glyph(s) corresponding to the specified character. If multiple glyph(s) are used to render
the given character and the glyphs each have different rotations (e.g., dueto
text-on-a-path), the user agent shall an average value (e.g., the rotation angle at the
midpoint along the path for all glyphs used to render this character).

Parameters
in unsigned long charnum The index of the character. (The first character has an
index of 1.)
Return value

float The rotation angle.

Exceptions
DOMException INDEX_SIZE ERR: Raised if the charnum is out of range.

getCharNumAtPosition

Returns the index of the character whose character cell bounding box contains the
specified point. The calculations assume that all glyphs occupy the full standard character
cell for the font. If no such character exists, avalue of zero isreturned. If multiple such
characters exist, the last character lexically within the element is used.

Parameters

in SVGPoint point A point in user space.
Return value

long Theindex of the character which is at the given point.
Exceptions

SVGException SVG_WRONG_TYPE_ERR: Raised if the parameter is of the
wrong type.

selectSubString

Causes the specified substring to be selected just asif the user selected the substring
interactively.
Parameters
in unsigned long charnum The index of the first character in the substring. (The
first character has an index of 1.)

inunsigned long nchars The number of charactersin the substring. If nchars
specifies more characters than are available, then the
substring will consist of all characters starting with
charnum until the end of the list of characters.

No Return Vaue
Exceptions
DOMException INDEX_SIZE ERR: Raised if the charnum is out of range.

Interface SVGTextElement

The SV GTextElement interface corresponds to the 'text' element.

| DL Definition

i nterface SVGText El enent : SVGText Cont ent El ement, SVGTransfor nabl e {
attribute SVG.ength x;
attri bute SVG.ength vy;

#i f def EXCHANGESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Exchange SVG
EXCHANGESVGText El ement At trs;

#endi f EXCHANGESVG

Attributes
SVGLength x
Corresponds to attribute x on the given 'text' element.
SVGLengthy
Corresponds to attribute y on the given 'text' element.

Interface SVGTextPositioningElement

The SV GTextPositioningElement interface isinherited by text-related interfaces: SV GT SpanElement,
SVGTRefElement and SV GTextPathElement.

| DL Definition

i nterface SVGText Positioni ngEl enent : SVGText Cont ent El ement {
attribute SVG.engthLi st x;
attribute SVG.engthLi st vy;
attribute SVG.engthLi st dx;
attribute SVGA.engthLi st dy;
attribute SVG.engthList rotate;

Attributes

SVGLengthList x

Corresponds to attribute x on the given element.
SVGLengthListy

Corresponds to attribute y on the given element.
SVGLengthList dx

Corresponds to attribute dx on the given element.
SVGLengthList dy

Corresponds to attribute dy on the given element.
SVGLengthList rotate

Corresponds to attribute rotate on the given element.

Interface SVGTSpanElement

The SV GT SpanElement interface corresponds to the 'tspan’ element.

IDL Definition

interface SVGISpanEl ement : SVGText Positioni ngEl enent;

Interface SVGTRefElement

The SVGTRefElement interface corresponds to the 'tref' element.

| DL Definition

interface SVGIRef El enent : SVGText Positi oni ngEl enent, SVGURI Ref er ence;

Interface SVGTextPathElement

The SV GTextPathElement interface corresponds to the 'textPath' element.

| DL Definition

i nterface SVGText Pat hEl enent : SVGText Positi oni ngEl enent, SVGURI Ref erence {
attribute SVGAength startOffset;
3

Attributes
SV GLength startOff set
Corresponds to attribute startOffset on the given ‘textPath’ element.

Interface SVGAItGlyphElement

The SVGAItGlyphElement interface corresponds to the ‘altGlyph' element.

IDL Definition

interface SVGAI t d yphEl enent : SVGText Cont ent El ement, SVGURI Ref er ence;

Interface SVGAItGlyphDefElement

The SVGAItGlyphDefElement interface corresponds to the ‘altGlyphDef' element.

IDL Definition

interface SVGAl t G yphDef El enent : SVGEl enent;

Interface SVGGlyphSubElement

The SV GGlyphSubElement interface corresponds to the 'glyphSub’ element.

| DL Definition

interface SVG3 yphSubEl enent : SVCGEl ement {
attribute DOVString fontFamly;
attribute DOVBtring gl yphRef;
attribute DOVBtring fornmat;

Attributes
DOM String fontFamily
Corresponds to attribute fontFamily on the given 'glyphSub' element.
DOM String glyphRef
Corresponds to attribute glyphRef on the given 'glyphSub' element.
DOM String format
Corresponds to attribute format on the given 'glyphSub’ element.

previous next contents properties index

previous next contents properties index

11 Painting: Filling, Stroking and Marker Symbols

Contents

« 11.1 Introduction

» 11.2 Specifying paint

» 11.3 Fill Properties

o 11.4 Stroke Properties

o 11.5 Markers
o 11.5.1 Introduction
o 11.5.2 The 'marker' element
o 11.5.3 Marker properties

o 11.5.4 Details on how markers are rendered

« 11.6 Rendering properties

« 11.7 Inheritance of painting properties
« 11.8 DOM interfaces

11.1 Introduction

‘path’ elements, 'text' elements and basic shapes can be filled (which means painting the interior of the object) and stroked (which
means painting aong the outline of the object). Filling and stroking both can be thought of in more general terms as painting
operations.

Certain elements (i.e., ‘path’, 'polyling’, ‘polygon’ and ‘line’ elements) can also have marker symbols drawn at their vertices.

With SVG, you can paint (i.e., fill or stroke) with:
« asinglecolor
« agradient (linear or radial)
« apattern (vector or image, possibly tiled)
« custom paints available via extensibility

SV G uses the general notion of apaint server. Gradients and patterns are just specific types of paint servers. For example, first you
can define alinear gradient by including a'linearGradient’ element with an ID and then reference that ID in afill" or 'stroke’

property:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dth="4i n" hei ght="3in">
<desc>Li near gradi ent exanple
</ desc>
<g>
<def s>
<l inear G adient id="MWG adient">
<stop of fset="0% style="col or: #F60"/ >
<stop offset="70% style="col or: #FF6"/ >
</ li near G adi ent >
</ def s>
<rect style="fill: url (#M/G adient)" w dth="20" hei ght="15.8"/>
</ g>

</ svg>

Download this example

11.2 Specifying paint

Properties 'fill' and 'stroke' take on a value of type <paint>, which is specified as follows:

<paint>: none|
currentColor |
<color> [icc-color(<name>,<icccolorvalue>+)] |
<uri> [none | currentColor | <color> [icc-color(<name>,<icccolorvalue>+)]] |
inherit
none
Indicates that the object has no fill (i.e., theinterior is transparent).
currentColor

Indicates that the object is. filled with the color specified by the ‘color' property. This mechanism is provided to facilitate
sharing of color attributes between parent grammars such as other (non-SVG) XML. This mechanism allows you to define a
stylein your HTML which setsthe ‘color’ property and then pass that style to the SV G user agent so that your SV G text will
draw in the same color.
<color>
[icc-color (<name>,<icccol or value>[,<icccolor value>]*)]

<color> isthe explicit color (in the SRGB [SRGB] color space) to be used to fill the current object. SV G supports al of
CSS2's <color> specifications. If an optiona |CC color specification is provided, then the user agent searches the color
profile description database for an @color-profile entry whose name descriptor matches <name> and uses the last matching
entry that is found. (If no match isfound, then the ICC color specification isignored.) Thelist of <icccolorvalue>'sis a set of
ICC-profile-specific color values, expressed as <number>s. On platforms which support |CC-based color management, the
icc-color gets precedence over the <color> (which isin the SRGB color space). Note that color interpolation occursin an
RGB color space even if an ICC-based color specification is provided (see 'color-interpolation’). Percentages are not allowed
on <icccolorvalue>'s. For more on |CC-based colors, refer to Color profile descriptions and @color-profile.

<uri>
[none|
currentColor |
<color > [icc-color (<name>,<icccol or value>[,<icccolor value>]*)]]

The <uri> is how you identify afancy paint style such as a gradient, a pattern or a custom paint from extensibility. The <uri>
provides. the ID of the paint server (e.g., agradient or a pattern) to be used to paint the current object. If the URI referenceis
not valid (e.g., it pointsto an object that doesn't exist or the object is not avalid paint server), then the paint method following
the <uri> (i.e., none| currentColor |

<color>

[icc-color (<name>,<icceolor value>[,<icccolor value>]*)]|

inherit) isused if provided; otherwise, the document isin error (see Error processing).

11.3 Fill Properties

fill'
Value: <paint> (See Specifying paint)
Initial; currentColor
Appliesto: all elements
Inherited: see Inheritance of Painting Properties below
Percentages: N/A
Media: visua
Animatable: yes

Note that graphical objects that are not closed (e.g., a'path’ without a closepath at the end or a'polyline) still can be filled. Thefill
operation automatically closes all open subpaths by connecting the last point of the subpath with the first point of the subpath before
painting the fill.

fill-rule

file:///d|/public/svgspec/samples/lin-gradient.xml

Value: evenodd | nonzero | inherit

Initial: evenodd
Appliesto: all elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

evenodd

nonzero

fill-opacity'
Value: <opacity-value> | inherit
Initial: 100%
Appliesto: all elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

'fill-opacity' specifies the opacity of the painting operation used to paint the interior the current object. (See Painting shapes and
text.)

<opacity-value>

The opacity of the painting operation used to fill the current object. Any values outside the range 0.0 (fully transparent) to 1.0
(fully opaque) will be clamped to this range. (See Clamping values which are restricted to a particular range

Related properties: 'stroke-opacity’ and ‘opacity'.

11.4 Stroke Properties

The following are the properties which affect how an element is stroked.

In all cases, al stroking properties which are affected by directionality, such as those having to do with dash patterns, must be
rendered such that the stroke operation starts at the same point at which the graphics element starts. In particular, for 'path’ elements,
the start of the path isthe first point of the initial "moveto” command.

For stroking properties such as dash patterns whose computations are dependent on progress along the outline of the graphics
element, distance calculations are required to utilize the SVG user agent's standard Distance along a path algorithms.

When stroking is performed using a complex paint server, such as agradient or a pattern, the stroke operation must be identical to
the result that would have occurred if the geometric shape defined by the geometry of the current graphics element and its associated
stroking properties were converted to an equivaent 'path’ element and then filled using the given paint server.

‘stroke’
Value: <paint> (See Specifying paint)

Initial: none

Appliesto: all elements

Inherited: see Inheritance of Painting Properties below
Percentages: N/A

Media: visual

Animatable: yes

‘stroke-width'
Value: <width> | inherit
Initial: 1
Appliesto: all elements
Inherited: yes
Percentages. Yes
Media: visua

Animatable: yes

<width>

The width of the stroke on the current object, expressed as a <length>. If a percentage is used, the <width> is expressed as a

percentage of the current viewport
(See Processing rules for CSS units and percentages.)

'stroke-linecap’

Value: butt | round | square | inherit
Initial: butt

Appliesto: all elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

'stroke-linecap' specifies the shape to be used at the end of open subpaths when they are stroked.
butt
See drawing below.
round
See drawing below.
square
See drawing below.

‘stroke-lingjoin’

Value: miter | round | bevel | inherit
Initial: miter

Appliesto: all elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

‘stroke-lingjoin’ specifies the shape to be used at the corners of paths (or other vector shapes) that are stroked. when they are stroked.
miter
See drawing below.
round
See drawing below.
bevel
See drawing below.

'stroke-miterlimit'

Value: <miterlimit> | inherit
Initial: 8

Appliesto: @l elements
Inherited: yes

Percentages: N/A

Media: visua

Animatable: yes

When two line segments meet at a sharp angle and miter joins have been specified for 'stroke-lingjoin', it is possible for the miter to
extend far beyond the thickness of the line stroking the path. The 'stroke-miterlimit' imposes alimit on the ratio of the miter length to
the 'stroke-linewidth'.

<miterlimit>

The limit on the ratio of the miter length to the 'stroke-linewidth'. The value of <miterlimit> must be a number greater than
or equal to 1.

‘stroke-dasharray’

Value: none | <dasharray> | inherit
Initial: none

Appliesto: all elements

Inherited: yes

Percentages: yes (see below)

Media: visua

Animatable: yes (non-additive)

'stroke-dasharray' controls the pattern of dashes and gaps used to stroke paths. <dasharray> containsalist of space- or
comma-separated <number>s that specify the lengths of aternating dashes and gaps in user units. If an odd number of valuesis

provided, then the list of valuesis repeated to yield an even number of values. Thus, stroke-dasharray: 5 3 2 is equivalent to
stroke-dasharray: 53253 2.

none
Indicates that no dashing is used. If stroked, the lineis drawn solid.
<dasharray>

A list of space- or comma-separated <length>'s which can be in user units or in any of the CSS units, including percentages.
A percentage represents a distance as a percentage of the current viewport. (See Processing rules for CSS units and

percentages.)

'stroke-dashoffset'
Value: <dashoffset> | inherit
Initial: 0
Appliesto: all elements
Inherited: yes
Percentages: Yes. See below.
Media: visual

Animatable: yes

'stroke-dashoffset' specifies the distance into the dash pattern to start the dash.
<dashoffset>

A <length>. If apercentage is used, the <width> is expressed as a percentage of the current viewport
(See Processing rules for CSS units and percentages.)

'stroke-opacity’
Value: <opacity-value> | inherit
Initial: 100%
Appliesto: all elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

‘stroke-opacity’ specifies the opacity of the painting operation used to stroke the current object. (See Painting shapes and text.)

<opacity-value>

The opacity of the painting operation used to stroke the current object. Any values outside the range 0.0 (fully transparent) to
1.0 (fully opague) will be clamped to this range. (See Clamping values which are restricted to a particular range

Related properties: fill-opacity' and 'opacity’.

11.5 Markers

11.5.1 Introduction

To use amarker symbol for arrowheads or polymarkers, you need to define a'marker' element which defines the marker symbol
and then refer to that 'marker' element using the various marker properties (i.e., 'marker-start', 'marker-end', 'marker-mid' or 'marker")
on the given 'path’ element or vector graphic shape. Here is an example which draws a triangular marker symbol that is drawn as an

arrowhead at the end of a path:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="4in" hei ght="4in"
vi ewBox="0 0 4000 4000" >
<def s>
<marker id="Triangle"
vi ewBox="0 0 10 10" refX="0" refy="5"
mar ker Wdt h="1. 25" mar ker Hei ght =" 1. 75"
orient="auto">
<path d="M O O L 105 L 0 10 z" />

</ mar ker >
</ def s>
<desc>Pl aci ng an arrowhead at the end of a path.
</ desc>
<path d="M 1000 1000 L 2000 1000 L 3000 2000"
style="fill:none; stroke: bl ack; stroke-wi dth: 100;

mar ker-end: url (#Triangle)" />
</ svg>

Download this example

11.5.2 The 'marker' element

The 'marker' element defines the graphicsthat is to be used for drawing arrowheads or polymarkers on a given 'path’ element or
vector graphic shape.

<IENTITY % mar ker Ext "" >
<! ELEMENT narker (%lescTitleDefs;,

(path|text|rect|circle|lellipse|line|polyline|polygon|

use| i mage| svg| g| switch|a
Y%ceExt ; %rar ker Ext;)*) >

<! ATTLI ST nar ker
YstdAttrs;
% angSpaceAttrs;
class % asslList; #l MPLI ED
ext er nal Resour cesRequi red %Bool ean; #l MPLI ED
ref X %Coordi nate; #l MPLI ED
ref Y %Coordi nate; #l MPLI ED
vi ewBox /i ewBoxSpec; # MPLI ED
preserveAspect Rati o %reserveAspect Rati oSpec; 'xM dYM d neet’
narkerUnits (strokeWdth | userSpace | userSpaceOnUse) "strokeWdth"
markerWdth %.ength; "3"
nmar ker Hei ght %.ength; "3"
orient CDATA "0"
%8t yl abl eSVG Styl eAttri bute;
%ExchangeSVG Cont ai ner Attrs;
%ExchangeSVG Fi | | StrokeAttrs;
%ExchangeSVG G adi ent Attrs;
%ExchangeSVG G aphi csAttrs;
%ExchangeSVG Mar ker Attrs;
%ExchangeSVG Text Cont ai ner Attrs;
%ExchangeSVG Text El ement Attrs;
%ExchangeSVG Vi ewport Attrs; >

Attribute definitions:
markerUnits = "strokeWidth | userSpace | userSpaceOnUse"

mar ker Units indicates how to interpret the values of markerWidth and marker Height (described as follows).

If markerUnits=" strokeWidth" , then markerWidth and marker Height represent scale factors relative to the stroke width
in place for graphic object referencing the marker.

If markerUnits=" user Space" , then marker Width and marker Height represent values in the user coordinate system in
place for the graphic object referencing the marker.

If markerUnits=" user SpaceOnUse" , then marker Width and mar ker Height represent values in the current user

file:///d|/public/svgspec/samples/marker.xml

coordinate system in place at the time when the 'marker' element is referenced (i.e., the user coordinate system for the
element referencing the 'marker' element via the 'marker’, 'marker-start', 'marker-mid' or 'marker-end' property). represent
valuesin the user coordinate system in place for the graphic object referencing the marker.

Animatable: yes.

refX ="<coordinate>"

The x-coordinate of the reference point which isto be aligned exactly at the marker position. The coordinate is defined in the
coordinate system after application of the viewBox and preserveAspectRatio attributes.

Animatable: yes.
refY ="<coordinate>"

The y-coordinate of the reference point which isto be aligned exactly at the marker position. The coordinate is defined in the
coordinate system after application of the viewBox and preserveAspectRatio attributes.

Animatable: yes.

markerWidth = "<length>"

Represents the width of the temporary viewport that isto be created when drawing the marker. Default valueis"3".
Animatable: yes.

markerHeight = "<length>"

Represents the height of the temporary viewport that is to be created when drawing the marker. Default valueis"3".
Animatable: yes.

orient = "auto | <angle>"

Indicates how the marker is rotated. A value of auto indicates that the marker is oriented such that its positive X-axisis
pointing in adirection that is the average of the ending direction of path segment going into the vertex and the starting
direction of the path segment going out of the vertex. (Refer to 'path' element implementation notes for a more thorough
discussion directionality of path segments.) A value of <angle> represents a particular orient in the user space of the graphic
object referencing the marker. For example, if avalue of "0" is given, then the marker will be drawn such that its X-axis will
align with the X-axis of the user space of the graphic object referencing the marker. The default value is an angle of zero.
Animatable: yes (non-additive, 'set' and ‘animate’ elements only).

Attributes defined elsewhere:
%nstdAttrs;, %langSpaceAttrs;, viewBox, preserveAspectRatio, %StylableSV G-StyleAttribute;.

Markers are drawn such that their reference point (i.e., attributes r ef-x and r ef-y) is positioned at the given vertex.

11.5.3 Marker properties

'marker-start' defines the arrowhead or polymarker that shall be drawn at the first vertex of the given 'path’ element or vector
graphic shape. 'marker-end' defines the arrowhead or polymarker that shall be drawn at the final vertex. ‘marker-mid' definesthe
arrowhead or polymarker that shall be drawn at every other vertex (i.e., every vertex except the first and last).

'marker-start', 'marker-end’, marker-mid'

Value: none |
inherit |
<uri>

Initial: none

Appliesto: 'path’, 'lin€, 'polyline’ and 'polygon’ elements
Inherited: see Inheritance of Painting Properties below
Percentages: N/A

Media: visual

Animatable: yes

none
Indicates that no marker symbol shall be drawn at the given vertex (vertices).

<uri>
The <uri>isaURI referenceto the ID of a'marker' element which shall be used as the arrowhead symbol or polymarker at
the given vertex (vertices). If the URI reference is not valid (e.g., it pointsto an object that is undefined or the object is not a
'marker' element), then the marker(s) shall not be drawn.

The'marker' property specifies the marker symbol that shall be used for al points on the sets the value for all vertices on the given

'path’ element or vector graphic shape. It is a short-hand for the three individual marker properties:

'marker'
Value: seeindividual properties
Initial: seeindividual properties
Appliesto: 'path’, 'lin€, 'polyline’ and 'polygon’ elements
Inherited: see |nheritance of Painting Properties below
Percentages: N/A
Media: visual
Animatable: yes

11.5.4 Details on how markers are rendered

The following provides details on how markers are rendered:
« Markers are drawn after the given object isfilled and stroked.

« Each marker isdrawn on the path by first creating atemporary viewport such that the origin of the viewport coordinate
system is at the given vertex and the axes are aligned according to the orient attribute on the ‘'marker' element.

« Thewidth and height of the viewport is established by evaluating the values of <markerUnits>, <markerWidth> and
<markerHeight> and calculating temporary values computed-width and computed-height in the user coordinate system of
the object referencing the markers. computed-width and computed-height are used to determine the dimensions of the
temporary viewport.

« Themarker isdrawn into the viewport.

For illustrative purposes, we'll repeat the marker example shown earlier:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="4i n" hei ght="4in"
vi ewBox="0 0 4000 4000" >
<def s>
<mar ker id="Triangle"
vi ewBox="0 0 10 10" refX="0" refY="5"
mar ker W dt h="1. 25" nar ker Hei ght =" 1. 75"
orient="auto">
<path d="M O O L 10 5L 0 10 z" />

</ mar ker >
</ def s>
<desc>Pl aci ng an arrowhead at the end of a path.
</ desc>
<path d="M 1000 1000 L 2000 1000 L 3000 2000"
style="fill:none; stroke: bl ack; stroke-w dth: 100;

marker-end: url (#Triangle)" />
</ svg></svg>

Download this example

The rendering effect of the above file will be visually identical to the following:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="4in" hei ght="4in"
vi ewBox="0 0 4000 4000" >
<def s>
<l-- Note: to illustrate the effect of "marker",
replace "marker" with "symbol" and renove the various
mar ker-specific attributes -->
<synbol id="Triangle"
vi ewBox="0 0 10 10">
<path d="M O O L 105 L 0 10 z" />
</ synbol >
</ def s>
<desc>Fi | e which produces the sane effect
as the marker exanple file, but without
usi ng narkers.

</ desc>
<I-- The path draws as before, but wi thout the marker properties -->
<path d="M 1000 1000 L 2000 1000 L 3000 2000"
style="fill:none; stroke: bl ack; stroke-wi dth:100" />
<l-- The follow ng logic sinulates drawi ng a marker

at final vertex of the path. -->

file:///d|/public/svgspec/samples/marker.xml

<l-- First off, nove the origin of the user coordinate system
so that the origin is now aligned with the end point of the path. -->
<g transforn¥"transl ate(3000 2000)" >

<l-- Now, rotate the coordinate system 45 degrees because
the marker specified orient="auto" and the final segnment
of the path is going in the direction of 45 degrees. -->

<g transfornr"rotate(45)" >

<!-- Establish a new viewort with an <svg> el enent.
The wi dt h/ hei ght of the viewport are 1.25 and 1.75 tinmes
the current stroke-wi dth, respectively. Since the
current stroke-width is 100, the viewport's w dth/hei ght
is 125 by 175. Apply the viewBox attribute
fromthe <marker> el enent onto this <svg> el enent.
Transformthe marker synbol to align (refX refY) with
the origin of the viewport. -->

<svg wi dth="125" hei ght="175"
vi ewBox="0 0 10 10"
transform"transl ate(0,-5)" >

<!-- Expand out the contents of the <marker> elenent. -->
<path d="M 0 O L 105 L 0 10 z" />
</ svg>
</ g>
</ g>
</ svg>

Download this example

11.6 Rendering properties

The SV G user agent performs color interpolations and compositing in the following cases:
» when rendering gradients

« when performing color animations (see 'animateColor')
» when performing al pha blending/compositing of graphics elementsinto the current background

» when performing variousfilter effects

The 'color-interpolation’ property specifies whether color interpolations and compositing shall be performed in the SRGB [SRGB
color space or in a (light energy linear) linearized RGB color space.

The conversion formulas between sRGB color space and linearized RGB color space is can be found in [SRGB]. The following
formula shows the conversion from sRGB to linearized RGB:

R [sRGB] = R[sRGB] / 255
G [sREB] = GsREB] / 255
B [sRGB] = B[sRGB] / 255

If R[sSRGB], G[sRGB], B [sRGB| <= 0.04045
R{linearRGB] = R [sRGB] / 12.92
dlinearRGB] = G [sRGB] / 12.92
B[linearRGB] = B [sRGB] / 12.92

else if R[sRGB], G[sRGB|, B [sRGEB| > 0.04045

R[linearRGB] = ((R[SRGB] + 0.055) / 1.055) ~ 2.4
glinearRGB] = ((G[sRGB] + 0.055) / 1.055) ~ 2.4
B[linearRGB] = ((B'[sRGB] + 0.055) / 1.055) ~ 2.4

Out-of-range color vaues, if supported by the user agent, also are converted using the above formulas. (See Clamping values which
arerestricted to a particular range.)

‘color-interpol ation'

Value: auto | SRGB | linearRGB | inherit

Initial: SRGB

Appliesto: color interpolation and compositing operations
Inherited: yes

Percentages: N/A

Media: visua

Animatable: yes

file:///d|/public/svgspec/samples/marker-effect.xml

auto

Indicates that the user agent can choose either the SRGB or linear RGBspaces for color interpolation. This option indicates
that the author doesn't require that color interpolation occur in a particular color space.

SRGB
Indicates that color interpolation should occur in the SRGB color space.
linearRGB
Indicates that color interpolation should occur in the linearized RGB color space as described above.
The creator of SV G content might want to provide a hint to the implementation about how to make speed vs. quality tradeoffs as it

performs color interpolation and compositing. The 'color-rendering’ property provides a hint to the SV G user agent about how to
optimize its color interpolation and compositing operations:

‘color-rendering'

Value: auto | optimizeSpeed | optimizeQuality | inherit
Initial: auto
Appliesto: color interpolation and compositing operations
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes

auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but quality shall be given more
importance than speed.

optimizeSpeed

Indicates that the user agent shall emphasize rendering speed over quality. For RGB display devices, this option will
sometimes cause the user agent to perform color interpolation and compositing in the device RGB color space.

optimizeQuality
Indicates that the user agent shall emphasize quality over rendering speed.
The creator of SVG content might want to provide a hint to the implementation about what tradeoffs to make as it renders vector

graphics elements such as 'path’ elements and basic shapes such as circles and rectangles. The 'shape-rendering' property provides
these hints.

‘shape-rendering'
Value: auto | optimizeSpeed | crispEdges |
geometricPrecision | inherit
Initial: auto
Appliesto: all elements
Inherited: yes
Percentages: N/A
Media: visua

Animatable: yes
auto

Indicates that the user agent shall make appropriate tradeoffs to balance speed, crisp edges and geometric precision, but with
geometric precision given more importance than speed and crisp edges.

optimizeSpeed

Indicates that the user agent shall emphasize rendering speed over geometric precision and crisp edges. This option will
sometimes cause the user agent to turn off shape anti-aliasing.

crispEdges

Indicates that the user agent shall attempt to emphasize the contrast between clean edges of artwork over rendering speed and
geometric precision. To achieve crisp edges, the user agent might turn off anti-aliasing for all lines and curves or possibly just
for straight lines which are close to vertical or horizontal. Also, the user agent might adjust line positions and line widths to
aign edges with device pixels.

geometricPrecision
Indicates that the user agent shall emphasize geometric precision over speed and crisp edges.

The creator of SVG content might want to provide a hint to the implementation about what tradeoffs to make asiit renderstext. The
‘text-rendering’ property provides these hints.

'text-rendering'

Value: auto | optimizeSpeed | optimizeL egibility |
geometricPrecision | inherit

Initial: auto

Appliesto: 'text' elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes
auto

Indicates that the user agent shall make appropriate tradeoffs to balance speed, legibility and geometric precision, but with
legibility given more importance than speed and geometric precision.

optimizeSpeed

Indicates that the user agent shall emphasize rendering speed over legibility and geometric precision. This option will
sometimes cause the user agent to turn off text anti-aliasing.

optimizel egibility
Indicates that the user agent shall emphasize legibility over rendering speed and geometric precision. The user agent will
often choose whether to apply anti-aliasing techniques, built-in font hinting or both to produce the most legible text.
geometricPrecision

Indicates that the user agent shall emphasize geometric precision over legibility and rendering speed. This option will usualy
cause the user agent to suspend the use of hinting so that glyph outlines are drawn with comparable geometric precision to
the rendering of path data.

The creator of SVG content might want to provide a hint to the implementation about how to make speed vs. quality tradeoffs asit
performs image processing. The 'image-rendering' property provides a hint to the SV G user agent about how to optimize itsimage
rendering.:

'image-rendering'

Value: auto | optimizeSpeed | optimizeQuality | inherit
Initial: auto
Appliesto: images
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes
auto
Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but quality shall be given more
importance than speed.
optimizeSpeed

Indicates that the user agent shall emphasize rendering speed over quality. This option will sometimes cause the user agent to
use a bilinear image resampling algorithm.

optimizeQuality
Indicates that the user agent shall emphasize quality over rendering speed. This option will sometimes cause the user agent to
use a bicubic image resampling algorithm.

The 'visibility' indicates whether a given object shall be rendered at all.

'visibility'
Value: visible | hidden | inherit
Initial: visible
Appliesto: all elements
Inherited: yes
Percentages: N/A
Media: visua
Animatable: yes
visible
The current object is drawn.
hidden

The current object is not drawn.

11.7 Inheritance of painting properties

The values of any of the painting properties described in this chapter can be inherited from a given object's parent. Painting,
however, is aways done on each leaf-node individually, never at the'g' level. Thus, for the following SV G, two distinct gradients are
painted (one for each rectangle):

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dth="4in" hei ght="3in">
<desc>Gradients apply to | eaf nodes
</ desc>
<g>
<def s>
<linearGadient id="MWGadient">
<stop of fset="0% style="col or: #F60"/>
<stop of fset="70% style="col or:#FF6"/>
</ li near G adi ent >
</ def s>
<g style="fill: url(#WGadient)">
<rect width="20" hei ght="15.8"/>
<rect width="35" height="8"/>
</ g>
</ g>
</ svg>

Download this example

11.8 DOM interfaces

The following interfaces are defined below: SV GPaint, SV GMarkerElement.

Interface SVGPaint

The SV GPaint interface corresponds to basic type <paint> and represents the values of properties fill' and 'stroke'.

IDL Definition

interface SVGPaint : SVCCol or {
/1 Paint Types

constant unsigned short SVG_PAI NTTYPE_UNKNOMN = 0;
constant unsigned short SVG _PAI NTTYPE_RGBCOLOR =1;
constant unsigned short SVG _PAI NTTYPE_RGBCOLOR_| CCCOLOR = 2;
constant unsigned short SVG _PAI NTTYPE_NONE = 101;
constant unsigned short SVG_PAI NTTYPE_CURRENTCOLOR = 102;
constant unsigned short SVG PAI NTTYPE_URI _NONE = 103;
constant unsigned short SVG PAI NTTYPE_URI _CURRENTCOLOR = 104;
constant unsigned short SVG PAI NTTYPE_URI _RGBCOLOR = 105;
constant unsigned short SVG PAI NTTYPE_URI _RGBCOLOR | CCCOLOR = 106;

readonly attribute unsigned short paintType;

readonly attribute DOVString uri;
readonly attribute unsigned short ani matedPai nt Type;
readonly attribute DOVString ani mat edUri ;

void setUri (in DOVBtring uri)
rai ses(SVCGException);
void setPaint (in unsigned short paintType, in DOMBtring uri, in RGBColor rgbColor, in SVG CCCol or iccColor)
rai ses(SVCGException);
b

Definition group Paint Types
Defined constants
SVG_PAINTTYPE_UNKNOWN The paint typeis not one of predefined types. It isinvalid to

attempt to define a new value of thistype or to attempt to
switch an existing value to this type.

file:///d|/public/svgspec/samples/twin-gradients.xml

SVG_PAINTTYPE_RGBCOLOR An sRGB color has been specified without an alternative ICC
color specification.

SVG_PAINTTYPE_RGBCOLOR_ICCCOLOR An sRGB color has been specified along with an aternative
ICC color specification.

SVG_PAINTTYPE_NONE Corresponds to a 'none' value on a <paint> specification.

SVG_PAINTTYPE_CURRENTCOLOR Corresponds to a 'currentColor' value on a <paint>
specification.

SVG_PAINTTYPE_URI_NONE A URI has been specified, along with either an explicit or an

implicit 'none' as the backup paint method in case the URI is
unavailable or invalid.

SVG_PAINTTYPE_URI_CURRENTCOLOR A URI has been specified, along with ‘currentColor' as the
backup paint method in case the URI is unavailable or
invalid.

SVG_PAINTTYPE_URI_RGBCOLOR A URI has been specified, along with an sSRGB color as the
backup paint method in case the URI is unavailable or
invalid.

SVG_PAINTTYPE_URI_RGBCOLOR_ICCCOLOR A URI has been specified, along with both an sRGB color
and alternate |CC color as the backup paint method in case
the URI isunavailable or invalid.

Attributes
readonly unsigned short paintType
The type of paint, identified by one of the constants above.
readonly DOM String uri

When the paintType specifies a URI, this attribute holds the URI string. When the paintType does not specify a URI,
this attribute is null.

readonly unsigned short animatedPaintType

If the given attribute or property is being animated, contains the current animated value of paintType. If the given
attribute or property is not currently being animated, contains the same value as paintType.

readonly DOM String animatedUri

If the given attribute or property is being animated, contains the current animated value of uri. If the given attribute or
property is not currently being animated, contains the same value as uri.

M ethods
SetUri
Setsthe paintTypeto SVG_PAINTTYPE_URI_NONE and sets uri to the specified vaue.
Parameters
in DOMString uri The URI for the desired paint server.
No Return Vaue
Exceptions
SV GException SVG_WRONG_TYPE_ERR: Raised if a parameter is of the wrong type.
setPaint

Sets the paintType as specified by the parameters. If pai nt Type requiresa URI, then uri must be non-null and a
valid string; otherwise, uri must be null. If pai nt Type requires an RGBColor, thenr gbCol or must beavalid
RGBColor object; otherwise, r gbCol or must be null. If pai nt Type requires an SVGICCColor, theni ccCol or
must be avalid SVGICCColor object; otherwise, i ccCol or must be null.

Parameters
in unsigned short paintType One of the defined constants for paintType.
in DOM String uri The URI for the desired paint server, or null.
in RGBColor rgbColor The specification of an SRGB color, or null.
in SVGICCColor iccColor The specification of an ICC color, or null.
No Return Vaue
Exceptions
SVGException SVG_WRONG_TYPE_ERR: Raised if a parameter is of the wrong type.

Interface SVGMarkerElement

The SV GMarkerElement interface corresponds to the 'marker' element.

IDL Definition

interface SVGvarkerEl ement : SVGEl enent, SVGLangSpace, SVGFitToVi ewBox {

/1 Marker Unit Types

constant unsigned short SVG MARKERUNI TS_UNKNOMWN
constant unsigned short SVG MARKERUNI TS_USERSPACE
constant unsigned short SVG MARKERUN TS_USERSPACEONUSE
constant unsigned short SVG MARKERUNI TS_STROKEW DTH

/1 Marker Orientation Types

constant unsigned short SVG MARKER ORI ENT_UNKNOMN
constant unsigned short SVG MARKER ORI ENT_AUTO
constant unsigned short SVG MARKER ORI ENT_ANGLE

attribute DOVBtring cl assNane;
readonly attribute unsigned short narker Uni

oo

nonon
NEe

ts;

readonly attribute unsigned short orientType;

readonly attribute SVGAngl e orient Angl e;
attribute SVGA.ength refX;
attribute SVGA.ength refy;
attribute SVGA.ength marker Wdt h;
attribute SVG.ength narkerHei ght;

#i f def STYLABLESVG
/1 The follow ng pre-defined attri

bute collections are only

/1 available in the DOM for Stylable SVG

STYLABLESVGSt yl eAttri bute;
#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The follow ng pre-defined attri

bute collections are only

/1 available in the DOM for Exchange SVG

EXCHANGESVGCont ai ner Attrs;
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGGr adi ent Attrs;
EXCHANGESVGG aphi csAttrs;
EXCHANGESVG\Var ker Attrs;
EXCHANGESVGText Cont ai ner Attrs;
EXCHANGESVGText El enent Attrs;
EXCHANGESVGVi ewport Attrs;
#endi f EXCHANGESVG

void setOrientToAuto ();

void setOrientToAngle (in SVGAngl e angle)
rai ses(SVGException);

Definition group Marker Unit Types
Defined constants

SVG_MARKERUNITS_UNKNOWN

SVG_MARKERUNITS USERSPACE

The marker unit type is not one of predefined types. Itisinvalid to
attempt to define a new value of thistype or to attempt to switch an
existing valueto this type.

The value of attribute markerUnitsis 'userSpace'.

SVG_MARKERUNITS USERSPACEONUSE The value of attribute markerUnitsis ‘userSpaceOnUse'.
SVG_MARKERUNITS STROKEWIDTH The value of attribute markerUnitsis 'strokeWidth'.

Definition group Marker Orientation Types
Defined constants

SVG_MARKER_ORIENT_UNKNOWN

SVG_MARKER _ORIENT_AUTO
SVG_MARKER_ORIENT _ANGLE

Attributes
DOM String className

The marker orientation is not one of predefined types. It isinvalid to
attempt to define a new value of thistype or to attempt to switch an
existing value to this type.

Attribute orient has value 'auto'.
Attribute orient has an angle value.

Corresponds to attribute class on the given element.
readonly unsigned short markerUnits

Corresponds to attribute markerUnits on the given 'marker' element. One of the Marker Units Types defined above.
readonly unsigned short orientType

Corresponds to attribute orient on the given 'marker' element. One of the Marker Orientation Types defined above.
readonly SVGAnNgle orientAngle

Corresponds to attribute orient on the given 'marker’ element. If markerUnitsis SVG_MARKER_ORIENT_ANGLE,
the angle value for attribute orient; otherwise, it will be set to zero.

SVGLength refX

Corresponds to attribute refX on the given 'marker' element.
SVGLength refY

Corresponds to attribute refY on the given 'marker’ element.
SV GLength markerWidth

Corresponds to attribute markerWidth on the given 'marker' element.
SV GLength markerHeight

Corresponds to attribute markerHeight on the given 'marker' element.

Methods

setOrientToAuto

Sets the value of attribute orient to ‘auto'.

No Parameters

No Return Vaue

No Exceptions
setOrientToAngle

Sets the value of attribute orient to the given angle.

Parameters

in SVGAngle angle The angle value to use for attribute orient.
No Return Vaue
Exceptions
SVGException SVG_WRONG_TYPE_ERR: Raised if a parameter is of the wrong type.

previous next contents properties index

previous next contents properties index

12 Color

Contents

e 12.1 Introduction

e 12.2 Color profile descriptions and @color-profile
e« 12.3 DOM interfaces

12.1 Introduction

All SVG colors are specified in the SRGB color space (see [SRGB]). At aminimum, SV G user agents

shall conform to the color behavior requirements specified in the Colors chapter of the CSS2
specification (see [CSS2)]).

Additionally, SV G content can specify an alternate color specification using an |CC profiles (see
[1CC32]). If ICC-based colors are provided and the SV G user agent support ICC color, then the

| CC-based color takes precedence over the SRGB color specification. Note that color interpolation
occursin an RGB color space even if an |CC-based color specification is provided (see
‘color-interpolation’).

For more on specifying color properties, refer to the descriptions of the 'fill' property and the 'stroke
property.

The 'color’ property is used to provide a potential indirect value (currentColor) for the 'fill' and 'stroke’
properties.
‘color’

Value: <color> | inherit

Initial: depends on user agent

Appliesto: fill' and 'stroke' properties

Inherited: see Inheritance of Painting Properties
Percentages: N/A

Media: visual

Animatable: yes

For a description of the parameters, refer to [CSS2].

12.2 Color profile descriptions and @color-profile

The International Color Consortium has established a standard, the ICC Profile [ICC32], for

documenting the color characteristics of input and output devices. Using these profiles, it is possible to
build atransform and correct visual datafor viewing on different devices.

A color profile description provides the bridge between an |CC profile and references to that ICC profile
within SV G content. The color profile description is added to the user agent's list of known color
profiles and then used to select the relevant profile. The color profile description contains descriptors for
the location of the color profile on the Web, a name to reference the profile and information about
rendering intent.

Color profile descriptionsin CSS style sheets are specified via an @color-profile rule. The general form
is:

@olor-profile { <color-profile-description>}

where the <col or-profile-description> has the form:

descriptor: val ue;

[...]

descriptor: val ue;

Each @color-profile rule specifies avalue for every color profile descriptor, either implicitly or
explicitly. Those not given explicit valuesin the rule take the initial value listed with each descriptor in
this specification. These descriptors apply solely within the context of the @color-profile rule in which
they are defined, and do not apply to document language elements. Thus, there is no notion of which
elements the descriptors apply to, or whether the values are inherited by child elements.

The following are the descriptors for a <color-profile-description>:
‘'src' (Descriptor)

Values:sRGB | <uri> | inherit

Initial: auto

Media: visual
SRGB

The source profile is assumed to be SRGB [SRGB]. This differsfrom auto in that it overrides an
embedded profile inside an image.

<uri>

The name or location of a standard |CC profile resource. Due to the size of profiles, the <uri>
may specify a special name representing a standard profile. The name sRGB, being the standard
WWW color space, is defined separately because of its significance, although the rules regarding
application of any special profile shall be identical.

‘name’ (Descriptor)

Values; <name>
Initial: undefined
Media: visual
<name>
The name which is used as the first parameter for icc-color specifications within 'fill', 'stroke’ and

http://www.color.org/

'stop-color' property values to identify the color profile to use for the ICC color specification.

Note that if <name> is not provided, it will be impossible to reference the given @color-profile
definition.

‘rendering-intent’ (Descriptor)
auto | perceptual | relative-colorimetric |

Values saturation | absolute-colorimetric | inherit
Initial: auto
Media: visual

Animatable: no

This property permits the specification of a color profile rendering intent other than the default. The
behavior of values other than auto and inherent are defined by the International Color Consortium
standard.

auto

Thisisthe default behavior. The user-agent determines the best intent based on the content type.
For image content containing an embedded profile, it shall be assumed that the intent specified
within the profile is the desired intent. Otherwise, the user agent shall use the current profile
(based on the color-profile style) and force the intent, overriding any intent that might be stored
in the profile itself.

12.3 DOM interfaces

The following interfaces are defined below: SV GICCColor, SVGColor.

Interface SVGICCColor

The SVGICCColor expresses an | CC-based color specification and is a base class for interface
SVGCaolor

IDL Definition

interface SVd CCCol or {
attribute DOVString col orProfile;
readonly attribute SVGQ. st col ors;

b

Attributes
DOM String colorProfile

The name of the color profile, which is the first parameter of an ICC color specification.
readonly SVGList colors

Thelist of color values that define this ICC color. Each color value is an arbitrary
floating point number.

The various methods from SV GList, which are defined to accept parameters and return

values of type Object, must receive parameters of type float and return values of type
float.

Interface SVGColor

The SVGCaolor corresponds to color value definition for the 'stop-color' property and is a base class for
interface SV GPaint. It incorporates SV G's extended notion of color, which incorporates | CC-based color
specifications.

Interface SV GColor does not correspond to the <color> basic data type. For the <color> basic data type,
the applicable DOM interfaces are defined in [DOM2-CSS]; in particular, see the

[DOM2-CSS-RGBCOLOR].

IDL Definition

interface SVGCol or {
/1 Col or Types
constant unsi gned short SVG COLORTYPE_ UNKNOWN
constant unsigned short SVG COLORTYPE_RGBCOLCR
constant unsigned short SVG COLORTYPE_RGBCOLCR | CCCOLOR

nonon
NEo

readonly attribute unsigned short col or Type;
readonly attribute RGBCol or rgbCol or;

readonly attribute SVGE CCCol or i ccCol or;

readonly attribute unsigned short ani mat edCol or Type;
readonly attribute RGBCol or ani mat edRGBCol or ;
readonly attribute SVGE CCCol or ani mat edl CCCol or;

voi d set RGBCol or (in RGBCol or rghCol or)
rai ses(SVGException);

voi d set RGBCol or | CCCol or (in RA&BCol or rgbCol or, in SVA CCCol or iccCol or)
rai ses(SVGException);

RGBCol or createR@Color ();

SVd CCCol or createSvVd CCCol or ();

Definition group Color Types
Defined constants

SVG_COLORTYPE _UNKNOWN The color typeis not one of
predefined types. Itisinvalid to
attempt to define a new value of this
type or to attempt to switch an
existing value to this type.

SVG _COLORTYPE _RGBCOLOR An sRGB color has been specified
without an alternative | CC color
specification.

SVG_COLORTYPE_RGBCOLOR_ICCCOLOR An sRGB color has been specified
along with an alternative ICC color
specification.

Attributes

readonly unsigned short colorType
The type of the value as specified by one of the constants specified above.
readonly RGBColor rgbhColor
The color specified in the SRGB color space.
readonly SV GICCColor iccColor
The alternate |CC color specification.
readonly unsigned short animatedColorType

If the given attribute or property is being animated, contains the current animated value
of colorType. If the given attribute or property is not currently being animated, contains
the same value as colorType.

readonly RGBColor animatedRGBColor

If the given attribute or property is being animated, contains the current animated value
of rgbColor. If the given attribute or property is not currently being animated, contains
the same value as rgbColor.

readonly SV GICCColor animatedl CCColor

If the given attribute or property is being animated, contains the current animated value
of iccColor. If the given attribute or property is not currently being animated, contains the
same value asiccColor.

M ethods

setRGBColor
Modifies the color value to be the specified SRGB color without an aternate |CC color
specification.
Parameters
in RGBColor rgbColor The new sRGB color specification.
No Return Value
Exceptions
SVGException SVG_WRONG_TYPE_ERR: Raised if a parameter is of the
wrong type.

setRGBColorl CCColor

Modifies the color value to be the specified SRGB color with an aternate ICC color
specification.

Parameters

in RGBCaolor rgbColor The new sRGB color specification.
in SVGICCColor iccColor The aternate ICC color specification.

No Return Value
Exceptions
SVGException SVG_ WRONG_TYPE_ERR: Raised if a parameter is of the
wrong type.
createRGBColor

Returns an RGBColor object which isinitialized to red=green=blue=0.

No Parameters
Return value

RGBColor The returned RGBColor object.

No Exceptions
createSV GICCColor

Returns an SVGICCColor object whichisinitialized to an empty list of colors and a null
for the colorProfile string.

No Parameters
Return value

SVGICCColor Thereturned SVGICCColor object.
No Exceptions

previous next contents properties index

previous next contents properties index

13 Gradients and Patterns

Contents

« 13.1 Introduction
« 13.2 Gradients
o 13.2.1 Introduction
o 13.2.2 Linear gradients
o 13.2.3 Radial gradients
o 13.2.4 Gradient stops
» 13.3 Patterns
e 13.4 DOM interfaces

13.1 Introduction

With SVG, you can fill (i.e., paint the interior) or stroke (i.e., paint the outline) of shapes and text using one of the
following:

« color
« gradients (linear or radial)
« patterns (vector or image, possibly tiled)

SVG uses the general notion of a paint server. Gradients and patterns are just specific types of paint servers. For example,
first you define alinear gradient by including a'linearGradient' element with an ID and then reference that ID in a'fill' or
'stroke' property:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg w dt h="4in" hei ght="3in">
<desc>Li near gradi ent exanple
</ desc>
<g>
<def s>
<linearGadient id="MWG adient">
<stop of fset="0% style="stop-col or:#F60"/>
<stop of fset="70% style="stop-col or: #FF6"/>
</linear G adi ent >
</ def s>
<rect style="fill: url(#M/Gadient)" w dth="20" hei ght="15.8"/>
</ g>
</ svg>

Download this example

file:///d|/public/svgspec/samples/lin-gradient.xml

13.2 Gradients

13.2.1 Introduction

Gradients consist of continuously smooth color transitions along a vector from one color to another, possibly followed by
additional transitions along the same vector to other colors. SV G provides for two types of gradients, linear gradients and

radial gradients.

Once defined, gradients are then referenced using 'fill' or 'stroke’ or properties on a given graphics element to indicate that
the given element shall be filled or stroked with the referenced gradient.

13.2.2 Linear gradients

Linear gradients are defined by a'linear Gradient' element.

<IENTITY % inear Gradi ent Ext "" >
<! ELEMENT |inear Gradi ent (stop|animate|set|ani mateTransform

% i near G adi ent Ext;)* >
<I' ATTLI ST li near G- adi ent

YstdAttrs;

gradi entUnits (userSpace | userSpaceOnUse | object Boundi ngBox) ' user Space'
gradi ent Tr ansf or m %Ir ansf or nLi st; #l MPLI ED

x1 %Coor di nate; #l MPLI ED

y1l %Coordi nate; #l MPLI ED

x2 Y%Coordi nate; #l MPLI ED

y2 Y%Coordi nate; #l MPLI ED

spreadMet hod (pad | reflect | repeat) "pad"

Wl i nkRef Attrs;

xlink: href %JRI; #l MPLIED

ext er nal Resour cesRequi red %Bool ean; #| MPLI ED >

Attribute definitions:
gradientUnits = "user Space | user paceOnUse | objectBoundingBox"

Defines the coordinate system for attributes x1, y1, x2, y2.
If gradientUnits="userSpace" (the default), x1, y1, x2, y2 represent values in the current user coordinate system in

place at the time when the 'linearGradient' element is defined.

If gradientUnits="userSpaceOnUse", x1, y1, x2, y2 represent values in the current user coordinate system in place at
the time when the 'linearGradient' element is referenced (i.e., the user coordinate system for the element referencing
the 'linearGradient’ element viaa'fill' or 'stroke’ property).

If gradientUnits="objectBoundingBox", then x1, y1, x2, y2 represent values in an abstract coordinate system where
(0,0) isthe (minx,miny) in user space of the bounding box of the object getting filled with the gradient, and (1,1) is
the (maxx,maxy) corner of the bounding box. (Note: the bounding box represents the maximum extent of the shape
of the object in X and Y with respect to the user coordinate system of the object exclusive of stroke-width.)
Animatable: yes.

gradientTransform = "<transform-list>"

Contains the definitions of an optional additional transformation from the gradient coordinate system onto the target
coordinate system (i.e., userSpace or objectBoundingBox). This alows for things such as skewing the gradient.
Animatable: yes.

x1 = "<coordinate>"

x1, y1, x2, y2 define agradient vector for the linear gradient. This gradient vector provides starting and ending
points onto which the gradient stops are mapped. The values of x1, y1, X2, y2 can be either numbers or percentages
whose meaning is determined by the value of attribute gradientUnits, asfollows:

| gradientUnits [Typeof value| M eaning of value

|" userSpace" anumber |The value represents a coordinate in the current user coordinate system

The value represents a percent distance along the X-axis of the current
viewport (see Processing rules for CSS units and percentages)

"userSpace” apercentage

The value represents a fractional position within the bounding box of the
given shape, where (0,0) is the (minx,miny) of the shape and (1,1) isthe
(maxx,maxy) of the shape. (See discussion of
gradientUnits="objectBoundingBox".)

"objectBoundingBox" |a number

The value represents a fractional position within the bounding box of the
given shape, where (0%,0%) is the (minx,miny) of the shape and
(100%,100%) is the (maxx,maxy) of the shape. (See discussion of
gradientUnits="objectBoundingBox".)

"objectBoundingBox" |a percentage

Default valueis "0%".
Animatable: yes.

y1 = "<coordinate>"

See x1. Default value is"0%".
Animatable: yes.

X2 = "<coordinate>"

See x1. Default value is "100%".
Animatable: yes.

y2 = "<coordinate>"

See x1. Default value is "0%".
Animatable: yes.

spreadMethod = "pad | reflect | repeat”

Indicates what happensif the the gradient starts or ends inside the bounds of the target rectangle. Possible values
are: pad, which saysto use the terminal colors of the gradient to fill the remainder of the target region, reflect, which
saysto reflect the gradient pattern start-to-end, end-to-start, start-to-end, etc. continuously until the target rectangle
isfilled, and repeat, which says to repeat the gradient pattern start-to-end, start-to-end, start-to-end, etc.
continuously until the target region isfilled.

Animatable: yes.

xlink:href ="<uri>"

A URI reference to a different 'linearGradient' or 'radial Gradient' element within the current SV G document
fragment. Any 'linearGradient’ attributes which are defined on the referenced element which are not defined on this
element are inherited by this element. If this element has no defined gradient stops, and the referenced element does
(possibly duetoits own href attribute), then this element inherits the gradient stop from the referenced element.
Inheritance can be indirect to an arbitrary level; thus, if the referenced element inherits attribute or gradient stops
due to its own href attribute, then the current element can inherit those attributes or gradient stops.

Animatable: yes.

Attributes defined el sewhere:
%stdAttrs;, YoxlinkRefAttrs;.

Percentages are allowed for x1, y1, X2, y2. For gradientUnits="userSpace", percentages represent values relative to the
current viewport. For gradientUnits="aobjectBoundingBox", percentages represent values relative to the bounding box for
the object.

13.2.3 Radial gradients

Radia gradients are defined by a'radialGradient' element.

<IENTITY %radi al Gadi entExt "" >
<! ELEMENT radi al Gradi ent (stop|ani mate|set|ani mateTransform

% adi al G adi ent Ext;)* >
<! ATTLI ST radi al G- adi ent

YstdAttrs;

gradi entUnits (userSpace | userSpaceOnUse | obj ect Boundi ngBox) ' user Space'
gr adi ent Tr ansf or m %r ansf ornli st; #l MPLI ED

cx %Coordi nate; #l MPLI ED

cy % Coordinate; #l MPLI ED

r %.ength; # MPLI ED

fx %Coordi nate; #l MPLI ED

fy %Coordinate; #l MPLI ED

Wl i nkRef Attrs;

xlink: href %JRI; #l MPLIED

ext er nal Resour cesRequi red %Bool ean; #| MPLI ED >

Attribute definitions:
gradientUnits = "user Space | user JoaceOnUse | objectBoundingBox"

Defines the coordinate system for attributes cx, cy, r, fx, fy.

If gradientUnits=" user Space" (the default), cx, cy, r, fx, fy represent valuesin the current user coordinate system
in place at the time when the 'linearGradient' element is defined.

If gradientUnits="userSpaceOnUse", cx, cy, I, fX, fy represent values in the current user coordinate system in place
at the time when the 'radial Gradient' element is referenced (i.e., the user coordinate system for the element
referencing the 'radialGradient' element viaa 'fill' or 'stroke’ property).

If gradientUnits=" objectBoundingBox" , then cx, cy, r, fX, fy represent values in an abstract coordinate system

where (0,0) is the (minx,miny) in user space of the bounding box of the object getting filled with the gradient, and
(1,2) isthe (maxx,maxy) corner of the bounding box. (Note: the bounding box represents the maximum extent of the
shape of the object in X and Y with respect to the user coordinate system of the object exclusive of stroke-width.)
Animatable: yes.

gradientTransform = "<transform-list>"

Contains the definitions of an optional additional transformation from the gradient coordinate system onto the target
coordinate system (i.e., userSpace or objectBoundingBox). This alows for things such as skewing the gradient.
Animatable: yes.

cx = "<coordinate>"

cx, ¢y, r define the largest/outermost circle for the radial gradient. The gradient will be drawn such that the 100%
gradient stop is mapped to the perimeter of this largest/outermost circle. Default value is "50%".

Animatable: yes.

¢y = "<coordinate>"
See cx. Default valueis "50%".
Animatable: yes.

r ="<length>"

See cx. Default value is "50%".
Animatable: yes.

fx = "<coordinate>"

fx, fy define the focal point for the radial gradient. The gradient will be drawn such that the 0% gradient stop is

mapped to (fx, fy). The default value is 50%.
Animatable: yes.

fy = "<coordinate>"

See fx. Default valueis "50%".
Animatable: yes.

xlink:href ="<uri>"

A URI reference to adifferent 'linearGradient' or 'radial Gradient' element within the current SV G document
fragment. Any 'radialGradient' attributes which are defined on the referenced element which are not defined on this

element are inherited by this element. If this element has no defined gradient stops, and the referenced element does
(possibly dueto its own href attribute), then this element inherits the gradient stop from the referenced element.
Inheritance can be indirect to an arbitrary level; thus, if the referenced element inherits attribute or gradient stops
duetoits own href attribute, then the current element can inherit those attributes or gradient stops.

Animatable: yes.

Attributes defined elsewhere;
%ostdAttrs;, YoxlinkRef Attrs;.

Percentages are allowed for cx, cy, r, fx, fy. For gradientUnits="userSpace", percentages represent values relative to the
current viewport. For gradientUnits="objectBoundingBox", percentages represent values relative to the bounding box for
the object.

13.2.4 Gradient stops

The ramp of colorsto use on agradient is defined by the 'stop' elements that are child elements to either the 'linearGradient
element or the 'radialGradient' element. Here is an example of the definition of alinear gradient that consists of a smooth
transition from white-to-red-to-black:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg w dt h="4in" height="3in">
<desc>Radi al gradi ent exanple with three gradient stops
</ desc>
<g>
<def s>
<radi al G adi ent id="MWG adient">
<stop of fset="0% style="stop-color:white"/>
<stop of fset="50% style="stop-color:red"/>
<stop of fset="100% styl e="stop-color:bl ack"/>
</radi al Gradi ent >
</ def s>
<circle style="fill: url(#WGadient)" cx="2in" cy="1.5in" r="1.25in"/>
</ g>
</ svg>

Download this example

<IENTITY % stopExt "" >
<! ELEMENT stop (ani nate|set| ani mat eCol or

Y%t opExt;)* >

<! ATTLI ST stop
YstdAttrs;
class % asslList; #l MPLI ED
of f set %.ength; #REQU RED
%St yl abl eSVG Styl eAttri bute;
%ExchangeSVG Gradi ent Attrs; >

Attribute definitions:
offset = "length"

The offset attribute is either a <number> (usually ranging from 0 to 1) or a percentage (correspondingly usually
ranging from 0% to 100%) which indicates where the gradient stop is placed. For linear gradients, the offset
attribute represents alocation along the gradient vector. For radial gradients, it represents a percentage distance
from (fx,fy) to the edge of the outermost/largest circle.

Animatable: yes.

Attributes defined el sewhere:
YostdAttrs;, %StylableSV G-StyleAttribute;.

file:///d|/public/svgspec/samples/rad-gradient.xml

The 'stop-color' property indicates what color to use at that gradient stop. The keyword currentColor and ICC colors can be
specified in the same manner as within a <paint> specification for the 'fill' and 'stroke' properties.

'stop-color'

Value: currentColor |
<color> [icc-color(<name>,<icccolorvalue>+)] |
inherit

Initial: black

Appliesto: 'stop’ elements

Inherited: no

Percentages. N/A

Media: visual

Animatable: yes

The 'stop-opacity' property defines the opacity of a given gradient stop.

'stop-opacity’
Value: <alphavalue> | inherit
Initial: 1
Appliesto: 'stop’ elements
Inherited: no
Percentages: N/A
Media: visual

Animatable: yes

Some notes on gradients:

« Gradient offset values less than 0 (or less than 0%) are rounded up to 0%. Gradient offset values greater than 1 (or
greater than 100%) are rounded down to 100%.

« There needsto be at |east two stops defined to have a gradient effect. If no stops are defined, then painting shall
occur asif 'none' were specified as the paint style. If one stop is defined, then paint with the solid color fill using the
color defined for that gradient stop.

« Each gradient offset value isrequired to be equal to or greater than the previous gradient stop's offset value. If a
given gradient stop's offset value is not equal to or greater than all previous offset values, then the offset value is
adjusted to be equal to the largest of all previous offset values.

« If two gradient stops have the same offset value, then the latter gradient stop controls the color value at the overlap
point.

13.3 Patterns

A pattern isused to fill or stroke an object using a pre-defined graphic object which can be replicated (“tiled") at fixed
intervalsin x and y to cover the areas to be painted.

Patterns are defined using a'pattern’ element and then referenced by propertiesfill: and stroke:.

<IENTITY % patternkExt "" >
<! ELEMENT pattern (%lescTitleDefs;,
(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| switch|a
% eExt; Y%patternExt;)*) >

<I ATTLI ST pattern
YstdAttrs;
% angSpaceAttrs;
class % asslList; #l MPLI ED
% estAttrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
patternUnits (userSpace | userSpaceOnUse | objectBoundi ngBox) ' user Space'
pat t er nTr ansf or m %Ir ansf or nlLi st ; #l MPLI ED
X %Coordi nate; #l MPLI ED
y %Coordi nate; # MPLI ED
wi dt h %.ength; #REQU RED
hei ght %.engt h; #REQUI RED
vi ewBox %/ ewBoxSpec; #l MPLI ED
preserveAspect Rati o %reserveAspect Rati oSpec; 'xM dYM d neet'’
9%l i nkRef Attrs;
xlink:href %JRI; # MPLI ED
%St yl abl eSVG Styl eAttri bute;

%ExchangeSVG Cont ai nerAttrs;
%&ExchangeSVG Fil | StrokeAttrs;
%ExchangeSVG Gradi ent Attrs;
%ExchangeSVG Graphi csAttrs;
%ExchangeSVG Mar ker Attrs;
%ExchangeSVG Text Cont ai nerAttrs;
%ExchangeSVG Text El enent Attrs;
%ExchangeSVG Vi ewport Attrs; >

Attribute definitions:
patternUnits = "user Space | user SpaceOnUse | objectBoundingBox"

Defines the coordinate system for attributes X, y, width, height and the contents of the 'pattern’.

If patternUnits="userSpace" (the default), X, y, width, height and the contents of the 'pattern’ represent valuesin the
current user coordinate system in place at the time when the 'mask’ element is defined.

If patternUnits="userSpaceOnUse", X, y, width, height and the contents of the 'pattern’ represent valuesin the
current user coordinate system in place at the time when the 'pattern’ element is referenced (i.e., the user coordinate
system for the element referencing the ‘pattern’ element viaa fill' or 'stroke' property).

If patternUnits="objectBoundingBox", X, y, width, height and the contents of the 'pattern’ represent values in the
abstract coordinate system where (0,0) is the (minx,miny) in user space of the tight bounding box of the object
referencing the mask, and (1,1) is the (maxx,maxy) corner of the bounding box. (Note: the bounding box represents
the maximum extent of the shape of the object in X and Y with respect to the user coordinate system of the object
exclusive of stroke-width.)

Animatable: yes.

patternTransform = "<transform-list>"

Contains the definitions of an optional additional transformation from the pattern coordinate system onto the target
coordinate system (i.e., userSpace or objectBoundingBox). This alows for things such as skewing the pattern tiles.
Animatable: yes.

X = "<coordinate>"

X, Y, width, height indicate how the pattern tiles are placed and spaced and represent coordinates and valuesin the
coordinate space specified by patternUnits. Default valueis"0%".
Animatable: yes.

y = "<coordinate>"

See x. Default value is "0%".
Animatable: yes.
width = "<length>"

See x. Default value is "100%".
Animatable: yes.

height = "<length>"
See x. Default value is "100%".
Animatable: yes.

xlink:href ="<uri>"

A URI referenceto adifferent 'pattern’ element within the current SV G document fragment. Any attributes which
are defined on the referenced element which are not defined on this element are inherited by this element. If this
element has children, and the referenced element does (possibly due to its own href attribute), then this element
inherits the children from the referenced element. Inheritance can be indirect to an arbitrary level; thus, if the
referenced element inherits attributes or children due to its own href attribute, then the current element can inherit
those attributes or gradient stops.

Animatable: yes.

Attributes defined €l sewhere;
%ostdAttrs;, %olangSpaceAttrs;, viewBox, preserveAspectRatio, %oxlinkRefAttrs;, %StylableSV G-StyleAttribute;.

An example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="4in" height="3in" >
<def s>
<pattern id="Triangl ePattern”
patternUnits="user Space"
x="0" y="0" w dth="25" hei ght ="25"
patternTransf or =" skewX(45) "
vi ewBox="0 0 10 10" >
<path d="M 0 O L 10 0 L 5 10 z" />
</ pattern>

</ def s>

<l-- Fill this ellipse with the above pattern -->

<ellipse style="fill: url (#TrianglePattern)" rx="40" ry="27" />
</ svg>

Download this example

13.4 DOM interfaces

The following interfaces are defined below: SV GGradientElement, SV GLinearGradientElement,
SV GRadial GradientElement, SV GStopElement, SV GPatternElement.

Interface SVGGradientElement

The SV GGradientElement interface is a base interface used by SV GLinearGradientElement and
SV GRadial GradientElement.

IDL Definition

interface SVGG adi ent El ement : SVCGElI enent, SVGURI Ref erence, SVGUnit Types {
attribute unsigned short gradientUnits;
attribute SVGITransfornli st gradi entTransform

Attributes
unsigned short gradientUnits
Corresponds to attribute gradientUnits on the given element. Takes on one of the constants defined in

file:///d|/public/svgspec/samples/patternfill.xml

SVGUnitTypes.
SVGTransformList gradientTransform
Corresponds to attribute gradientTransform on the given element.

Interface SVGLinearGradientElement

The SVGLinearGradientElement interface corresponds to the 'linearGradient’ element.

IDL Definition

interface SVG.i near Gradi ent El enent : SVGG adi ent El enent {
/1 Spread Method Types
constant unsi gned short SVG_SPREADVETHOD UNKNOMN
constant unsigned short SVG SPREADMETHOD_ PAD
constant unsigned short SVG SPREADMETHOD REFLECT
constant unsigned short SVG SPREADMETHOD REPEAT

N
@uhNEo

attribute SVG.ength x1;
attribute SVG.ength y1;
attribute SVG.ength X2;
attribute SVGLength y2;
attribute unsigned short spreadMethod;

Definition group Spread Method Types
Defined constants

SVG_SPREADMETHOD_UNKNOWN Thetypeis not one of predefined types. It isinvalid to attempt to
define a new vaue of thistype or to attempt to switch an existing
value to thistype.

SVG_SPREADMETHOD_PAD Corresponds to value pad.

SVG_SPREADMETHOD_ REFLECT Correspondsto value reflect.

SVG_SPREADMETHOD_ REPEAT Corresponds to value repest.

Attributes

SVGLength x1

Corresponds to attribute x1 on the given 'linearGradient' element.
SVGLength yl

Corresponds to attribute y1 on the given 'linearGradient’ element.
SVGLength x2

Corresponds to attribute x2 on the given ‘linearGradient' element.
SVGLength y2

Corresponds to attribute y2 on the given ‘linearGradient' element.
unsigned short spreadM ethod

Corresponds to attribute spreadM ethod on the given element. One of the Spread Method Types.

Interface SVGRadialGradientElement
The SV GRadial GradientElement interface corresponds to the 'radial Gradient' element.

IDL Definition

interface SVGRadi al Gradi ent El ement : SVGGradi ent El ement {
attribute SVG.ength cx;
attribute SVGength cy;

attribute SVG.ength r;
attribute SVG.ength fx;
attribute SVGength fy;

Attributes

SVGLength cx

Corresponds to attribute cx on the given 'radial Gradient' element.
SVGLength cy

Corresponds to attribute cy on the given 'radial Gradient' element.
SVGLengthr

Corresponds to attribute r on the given ‘radialGradient' element.
SVGLength fx

Corresponds to attribute fx on the given ‘radial Gradient' element.
SVGLength fy

Corresponds to attribute fy on the given 'radial Gradient' element.

Interface SVGStopElement

The SV GStopElement interface corresponds to the 'stop’ element.

IDL Definition

interface SVGSt opEl enment : SVGEl enent {
attribute DOVString cl assNane;
attribute float offset;

#i f def STYLABLESVG
/1 The following pre-defined attribute collections are only
/1 available in the DOM for Stylable SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

}

Attributes
DOM String className
Corresponds to attribute class on the given element.
float offset
Corresponds to attribute offset on the given 'stop' element.

Interface SVGPatternElement

The SV GPatternElement interface corresponds to the 'pattern’ element.

IDL Definition

interface SVGPatternEl enent : SVGEl ement, SVGLangSpace, SVGFitToVi ewBox, SVCGURI Reference, SVGUnitTypes {
attribute DOVSBtring cl assNane;
attribute unsigned short patternUnits;
attribute SVGIransfornlist patternTransform

attribute SVG.ength X;
attribute SVG.ength y;
attribute SVGL.ength wi dt h;

attribute SVGL.ength hei ght ;

#i f def STYLABLESVG
/1 The following pre-defined attribute collections are only
// available in the DOM for Styl able SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The followi ng pre-defined attribute collections are only
// available in the DOM for Exchange SVG
EXCHANGESVCGCont ai ner Attrs;
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGG adi ent At trs;
EXCHANGESVGG aphi csAttrs;
EXCHANGESVG\Var ker At trs;
EXCHANGESVGText Cont ai ner Attrs;
EXCHANGESVGText El enent Attrs;
EXCHANGESVGVi ewport Attrs;
#endi f EXCHANGESVG

H

Attributes
DOMString className
Corresponds to attribute class on the given element.
unsigned short patternUnits

Corresponds to attribute gradientUnits on the given ‘pattern’ element. Takes on one of the constants defined
in SVGUnitTypes.

SVGTransformList patternTransform

Corresponds to attribute patternTransform on the given 'pattern’ element.
SVGLength x

Corresponds to attribute x on the given 'pattern’ element.
SVGLengthy

Corresponds to attribute y on the given 'pattern’ element.
SV GLength width

Corresponds to attribute width on the given 'pattern’ element.
SVGLength height

Corresponds to attribute height on the given ‘pattern’ el ement.

previous next contents properties index

previous next contents properties index

14 Clipping, Masking and Compositing

Contents

e 14.1 Introduction

« 14.2 Simple apha blending/compositing
14.3 Clipping paths
o 14.3.1 Introduction
o 14.3.2 Theinitial clipping path
o 14.3.3 The'overflow' and 'clip' properties

o 14.3.4 Clip to viewport vs. clip to viewBox

o 14.3.5 Establishing a new clipping path
o 14.4 Masking
14.5 Object and group opacity: the 'opacity’ property
14.6 DOM interfaces

14.1 Introduction

SV G supports the following clipping/masking features:

« clipping paths, which uses any combination of 'path’, 'text' and basic shapes to serve as the
outline of a(in the absense of antialiasing) 1-bit mask, where everything on the "inside" of the
outlineis allowed to show through but everything on the outside is masked out

« masks, which are container elements which can contain graphics elements or other container

elements which define a set of graphics that isto be used as a semi-transparent mask for
compositing foreground objects into the current background.

One key distinction between a clipping path and amask is that clipping paths are hard masks (i.e., the
silhouette consists of either fully opaque pixels or fully transparent pixels, with the possible exception of
antialiasing along the edge of the silhouette) whereas masks consist of an image where each pixel value
indicates the degree of transparency vs. opacity. In amask, each pixel value can range from fully
transparent to fully opagque.

SV G supports only simple a pha blending compositing (see Simple Alpha Blending/Compositing).

(Insert drawings showing a clipping path, a grayscale imagemask, simple a pha blending and more
complex blending.)

14.2 Simple alpha blending/compositing

Graphics elements are blended into the elements already rendered on the canvas using simple apha
blending/compositing, in which the resulting color and opacity at any given pixel on the canvasisthe
result of the following formulas (al color values use premultiplied alpha):

Eg, Eb - El enent col or val ue
- El enment opacity/al pha val ue
Cg, b - Canvas col or val ue (before bl ending)

- Canvas opacity/al pha val ue (before bl ending)
, Cg', Cb' - Canvas color value (after bl ending)
- Canvas opacity/al pha value (after blending)

1-(1- E) * (1- Ca)
(1 - Ea) * O + FEr
- Ea) * Cg + Eg
(1- Ea) * Cb + Eb

88028 LQRRPN

The following rendering properties, which provide information about the color space in which to
perform the compositing operations, apply to compositing operations:

o 'color-interpolation'

« 'color-rendering'

14.3 Clipping paths

14.3.1 Introduction

The clipping path restricts the region to which paint can be applied. Conceptually, any parts of the
drawing that lie outside of the region bounded by the currently active clipping path are not drawn. A
clipping path can be thought of as a 1-bit mask.

14.3.2 The initial clipping path

When an 'svg’ element is encountered by a CSS user agent, the CSS user agent needs to establish an
initial clipping path for the SV G document fragment. The 'overflow' and ‘clip’ properties from CSS2
along with additional SV G user agent processing rules determine the initia clipping path which the CSS
user agent establishes for the SV G document fragment:

14.3.3 The 'overflow' and 'clip' properties

‘over flow'
Value: visible | hidden | scroll | auto | inherit
Initial: visible (see notes below)

Appliesto: elements which establish a new viewport
Inherited: no

Percentages: N/A

Media: visual

Animatable: N/A

The 'overflow' property has the same parameter values and has the same meaning as defined in

[CSS2-overflow]; however, the following additional points apply:

The 'overflow' property only applies to elements that establish new viewports, such as'svg'
elements. (See the discussion of the el ements which establish a new viewport.)

When an outermost SV G 'svg' element is embedded inline within a parent XML grammar which
uses CSS layout [CSS2-LAY OUT] or XSL formatting [XSL], if the 'overflow' property has the
value hidden, then the SV G user agent will establish aninitia clipping path equal to the bounds
of theinitial viewport; otherwise, theinitial clipping path is set according to the clipping rules as
defined in [CSS2-overflow].

When an outermost SV G 'svg' element is standalone or embedded inline within a parent XML
grammar which does not use CSS layout [CSS2-LAY OUT] or XSL formatting [XSL], the

‘overflow' property on the outermost 'svg' element isignored for the purposes of visual rendering
and theinitial clipping path is set to the bounds of the initial viewport.

For 'svg' elements that are embedded inside of an ancestor SV G document fragment (i.e., without
a'foreignObject’ element between the inner 'svg' and the nearest ancestor 'svg’) or for any other
elements which establish a new viewport, the ‘overflow' property determines whether an
additional new clipping path is established around the bounds of the viewport established by the
given element. If the value of the the 'overflow' property is hidden, then anew clipping path is
established; otherwise, no new clipping path is established.

Theinitial value for 'overflow' as defined in [CSS2-overflow] is'visible'; however, the Default
styles sheet for SV G specifies that the ‘overflow' property on al elements within an SVG
document fragment has the value "hidden'.

Asaresult of the above, the default behavior of SV G user agentsis to establish a clipping path to the
bounds of the initial viewport and to establish a new clipping path for each element which establishes a

new viewport.

For stand-alone SV G viewers or in situations where an SV G document fragment is embedded inline
within a parent XML grammar which does not use CSS layout or X SL formatting, then the initial
clipping path must be set to the bounds of the viewing region in which the SVG document fragment is
rendered, even if the and the 'overflow' property is set to avalue other than hidden.

For related information, see Clip to viewport vs. clip to viewBox.

‘clip’

Value: <shape> | auto | inherit

Initial: auto

Appliesto: elements which establish a new viewport
Inherited: no

Percentages. N/A

Media: visual

Animatable: N/A

The 'clip’ property only applies to e ements which establish anew viewport. The 'clip’ property has the
same parameter values as defined in [CSS2-clip]. Unitless values, which indicates current user

coordinates, are permitted on the coordinate values on the <shape>. The value of "auto" defines a
clipping path along the bounds of the viewport created by the given element.

14.3.4 Clip to viewport vs. clip to viewBox

It isimportant to note that initial values for the 'overflow' and 'clip' properties and the Default style sheet
for SVG will result in an initial clipping path that is set to the bounds of theinitial viewport. When
attributes viewBox and preserveAspectRatio attributes are specified on a viewport-creating el ement, it is
sometime desirable that the initial viewport be set to the bounds of the viewBox instead of the viewport,
particularly when preserveA spectRatio specifies uniform scaling and the aspect ratio of the viewBox
does not match the aspect ratio of the viewport.

To set theinitial clipping path to the bounds of the viewBox instead of the viewport, set the bounds of
‘clip' property to the same rectangle as specified on the viewBox attribute. (Note that the parameters
don't match. 'clip’ takes values <top>, <right>,<bottom> and <left>, whereas viewBox takes values
<min-x>, <min-y>, <width> and <height>.)

14.3.5 Establishing a new clipping path

A clipping path is defined with a'clipPath’ element. A clipping path is used/referenced using the
‘clip-path’ property.

A 'clipPath' element can contain 'path’ elements, 'text' elements, other vector graphic shapes (such as
‘circle) or a'use element. If a'use’ element isachild of a'clipPath’ element, it must directly reference
path, text or vector graphic shape elements. Indirect references are an error (see Error processing). The

silhouettes of the child elements are logically OR'd together to create a single silhouette which is then
used to restrict the region onto which paint can be applied.

It isan error if the 'clip-path’ property references a non-existent object or if the referenced object isnot a
‘clipPath’ element (see Error processing).

For a given graphics element, the actual clipping path used will be the intersection of the clipping path
specified by its 'clip-path’ property (if any) with any clipping paths on its ancestors, as specified by the
‘clip-path’ property on the ancestor elements.

A couple of notes:
« The'clipPath’ element itself and its child elements do not inherit clipping paths from the

ancesotors of the 'clipPath’ element.

« The'clipPath’ element or any of its children can specify property 'clip-path'.
If avalid 'clip-path’ reference is placed on a'clipPath’ element, the resulting clipping path is the
intersection of the contents of the 'clipPath’ element with the referenced clipping path.
If avalid 'clip-path' reference is placed on one of the children of a'clipPath’ el ement, then the
given child element is clipped by the referenced clipping path before OR'ing the silhouette of the
child element with the silhouettes of the other child elements.

<IENTITY %clipPathExt "" >
<! ELEMENT clipPath (%descTitle;,

(path|text|rect|circle|ellipse|line|polyline|polygon|
use| ani mat e| set | ani mat eMot i on| ani mat eCol or | ani mat eTr ansf orm
%eExt; %l i pPat hExt;)*) >

<! ATTLI ST cli pPath
st dAttrs;
% angSpaceAttrs;
class % assList; #l MPLI ED
transf orm %ransforniist; #l MPLIED
% est Attrs;
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
clipPathUnits (userSpace | userSpaceOnUse | objectBoundi ngBox) "user Space"
%St yl abl eSVG Styl eAttri bute;

%ExchangeSVG Cont ai ner Attrs;
%ExchangeSVG Fil | StrokeAttrs;
%EXxchangeSVG Gradi ent Attrs;
%ExchangeSVG G aphi csAttrs;
%ExchangeSVG Mar ker Attrs;
%ExchangeSVG Text Cont ai ner Attrs;
%ExchangeSVG Text El enent Attrs; >

Attribute definitions:
clipPathUnits = "user Space | user SpaceOnUse | objectBoundingBox™

Defines the coordinate system for the contents of the 'clipPath'.

If clipPathUnits="userSpace" (the default), the contents of the 'clipPath’ represent valuesin the
current user coordinate system in place at the time when the 'clipPath’ element is defined.

If clipPathUnits="userSpaceOnUse", the contents of the 'clipPath’ represent valuesin the current
user coordinate system in place at the time when the 'clipPath’ element is referenced (i.e., the
user coordinate system for the element referencing the 'clipPath’ element viathe 'clip-path’
property).

If clipPathUnits="0bjectBoundingBox", the contents of the 'clipPath’ represent valuesin the
abstract coordinate system where (0,0) is the (minx,miny) in user space of the tight bounding box
of the object referencing the mask, and (1,1) is the (maxx,maxy) corner of the bounding box.
(Note: the bounding box represents the maximum extent of the shape of the object in X and Y
with respect to the user coordinate system of the object exclusive of stroke-width.)

Animatable: yes.

Attributes defined elsewhere:
%stdAttrs;, Yol angSpaceAttrs;, %StylableSV G-StyleAttribute;.

‘clip-path’

Value: <uri> | none | inherit

Initial: See Theinitia clipping path: 'overflow' and ‘clip’ properties
Appliesto: al elements

Inherited: no

Percentages: N/A

Media: visual

Animatable: yes
<uri>

A URI reference to another graphical object within the same SV G document fragment which will
be used as the clipping path.

‘clip-rule
Value: evenodd | nonzero | inherit
Initial: evenodd
Appliesto: &l elements
Inherited: yes
Percentages. N/A
Media: visual

Animatable: yes

evenodd
nonzero

14.4 Masking

In SVG, you can specify that any other graphics object or 'g' element can be used as an alpha mask for
compositing the current object into the background.

A mask is defined with a'mask’ element. A mask is used/referenced using the 'mask’ property.
A 'mask’ can contain any graphical elements or grouping elementssuch asa'g'.

It isan error if the 'mask’ property references a non-existent object or if the referenced object isnot a
'mask’ element (see Error Processing).

The effect is asif the child elements of the 'mask’ are rendered into an offscreen image. Any graphical
object which uses/references the given 'mask’ element will be painted onto the background through the
mask, thus completely or partially masking out parts of the graphical object.

The following processing rules apply:

« If al of the child elements of the 'mask’ consist of the same type of one-channel image (i.e., a
grayscale image or an image consisting only of an alpha channel), then the child elements will be
processed as single channel images into a resulting single channel image result, and that single
channel result will be used as the mask.

« If al of the child elements of the 'mask’ consist of three-channel RGB images, then the child
elements will be processed as RGB images into a resulting RGB image result, and the luminance
from the resulting RGB image will be used as the mask, where the luminance is calculated using

the luminance-to-alpha formulas as defined in the 'feColorMatrix' filter effect.

» Otherwise, the child elements of the 'mask’ will be processed and will result in a four-channel
RGBA image, and the alpha channel from this resulting RGBA image will be used as the mask.

Note that SVG 'path"s, shapes (e.g., 'circle’) and 'text’ are all treated as four-channel RGBA images for

the purposes of masking operations.

In the following example, an image is used to mask a rectangle:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >

<svg wi dt h="4in" hei ght="3in">

<desc>Exanpl e of using a nmask
</ desc>
<g>
<def s>
<mask id="MMask">
<i mage xlink: href="transp. png" />
</ mask>
</ def s>

<rect style="mask: url (#WMask)" w dth="12.5" hei ght="30"

</ g>

</ svg>

Download this example

/>

A <mask> element can define aregion on the canvas for the mask using the following attributes:

<IENTITY % naskExt "" >
<! ELEMENT mask (%descTitl eDefs;,

(path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| swi t ch| a|

ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf orm

%ceExt ; %raskExt;)*) >

<I ATTLI ST mask

st dAttrs;

% angSpaceAttrs;

class % assList; #l MPLI ED

transf orm %ransforniist; #l MPLIED

% est Attrs,;

ext er nal Resour cesRequi red %Bool ean; #| MPLI ED
maskUnits (user Space | user SpaceOnUse | obj ect Boundi ngBox)
X %Coordi nate; #|l MPLI ED

y % Coordi nate; #|l MPLI ED

wi dth %.ength; #l MPLI ED

hei ght %.ength; #I MPLI ED

%St yl abl eSVG Styl eAttri bute;

%EXxchangeSVG Cont ai ner Attrs;
%EXxchangeSVG Fil | StrokeAttrs;
%ExchangeSVG Gradi ent Attrs;
%EXxchangeSVG Graphi csAttrs;
%ExchangeSVG Mar ker Attrs;
%ExchangeSVG Text Cont ai ner Attrs;
%EXxchangeSVG Text El enent At trs;
%ExchangeSVG Vi ewport Attrs; >

"user Space”

file:///d|/public/svgspec/samples/mask.xml

Attribute definitions:
maskUnits = "user Space | user paceOnUse | objectBoundingBox"

Defines the coordinate system for attributes x, y, width, height and the contents of the 'mask’.

If maskUnits="userSpace" (the default), x, y, width, height and the contents of the ‘'mask'’
represent values in the current user coordinate system in place at the time when the 'mask’
element is defined.

If maskUnits="userSpaceOnUse", X, y, width, height and the contents of the 'mask’ represent
valuesin the current user coordinate system in place at the time when the 'mask’ element is
referenced (i.e., the user coordinate system for the element referencing the 'mask’ element via the
'mask’ property).

If maskUnits="objectBoundingBox", X, y, width, height and the contents of the 'mask’ represent
values in the abstract coordinate system where (0,0) is the (minx,miny) in user space of the tight
bounding box of the object referencing the mask, and (1,1) is the (maxx,maxy) corner of the
bounding box. (Note: the bounding box represents the maximum extent of the shape of the object
in X and Y with respect to the user coordinate system of the object exclusive of stroke-width.)
Animatable: yes.

x = "<coordinate>"

The x coordinate of one corner of the rectangle for the largest possible offscreen buffer, where
the values are either relative to the current user coordinate system (if maskUnits="userSpace") or
relative to the current object (if maskUnits="objectBoundingBox™). Note that the clipping path
used to render any graphics within the mask will consists of the intersection of the current
clipping path associated with the given object and the rectangle defined by x, y, width, height.
The default value for x is 0%.

Animatable: yes.

y = "<coordinate>"

They coordinate of one corner of the rectangle for the largest possible offscreen buffer.The
default valuefor y is 0%.
Animatable: yes.

width = "<length>"

The width of the largest possible offscreen buffer, where the values are either relative to the
current user coordinate system (if maskUnits="userSpace") or relative to the current object (if
maskUnits="objectBoundingBox"). Note that the clipping path used to render any graphics
within the mask will consists of the intersection of the current clipping path associated with the
given object and the rectangle defined by X, y, width, height. The default value for width is
100%.

Animatable: yes.

height = "<length>"

The height of the largest possible offscreen buffer. The default value for height is 100%.
Animatable: yes.

Attributes defined elsewhere:
%stdAttrs;, Yol angSpaceAttrs;, %StylableSV G-StyleAttribute;.

The following is a description of the 'mask’ property.
Imw(l

Value: <uri> | none | inherit

Initial: none
Appliesto: &l elements
Inherited: no
Percentages: N/A

Media: visua

Animatable: yes
<uri>

A URI reference to another graphical object which will be used as the mask.

14.5 Object and group opacity: the '‘opacity’
property

There are several opacity properties within SVG:
« Fill opacity
« Stroke opacity
» Gradient stop opacity

« Object/group opacity (described here)

Except for object/group opacity (described just below), all other opacity properties are involved in
intermediate rendering operations. Object/group opacity can be thought of conceptually as a
postprocessing operation. Conceptually, after the object/group is rendered into an RGBA offscreen
image, the object/group opacity setting specifies how to blend the offscreen image into the current
background.

‘opacity’
Value: <aphavalue> | inherit
Initial: 1
Appliesto: &l elements
Inherited: no
Percentages: N/A
Media: visual

Animatable: yes

<aphavalue>
The uniform opacity setting to be applied across an entire object. Any values outside the range
0.0 (fully transparent) to 1.0 (fully opaque) will be clamped to this range. (See Clamping values
which are restricted to a particular range If the object is a container element such asa'g, then the

effect isasif the contents of the 'g' were blended against the current background using a mask
where the value of each pixel of the mask is <alphavalue>. (See Simple alpha

blending/compositing.)

Example opacity01, illustrates various usage of the 'opacity’ property on elements and groups.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG 20000303 Styl abl e/ / EN'

"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="12cm' hei ght="3. 5cntf >

<desc>Exanpl e opacity0l - opacity property</desc>

<! -- Background blue rectangle -->
<rect x="1lcnt y="1lcm' w dth="10cm hei ght="1.5cn style="fill:#0000ff" />

<I-- Red circles going fromopaque to nearly transparent -->
<circle cx="2cnt cy="1cnt' r=".5cn style="fill:red; opacity:1" />
<circle cx="4cm' cy="1cnm' r=".5cn style="fill:red; opacity:.8" />
<circle cx="6cm' cy="1lcn' r=".5cnm style="fill:red; opacity:.6" />
<circle cx="8cm' cy="1lcn' r=".5cm style="fill:red; opacity:.4" />
<circle cx="10cm' cy="1lcnt r=".5cm" style="fill:red; opacity:.2" />

<!'-- Opaque group, opaque circles -->
<g style="opacity:1">
<circle cx="1.825cm cy="2.5cm r=".5cn' style="fill:red; opacity:1" />
<circle cx="2.175cm cy="2.5cn r=".5cnf style="fill:green; opacity:1" />
</ g>
<l-- Goup opacity: .5, opacity circles -->
<g style="opacity:.5">
<circle cx="3.825cm' cy="2.5cm' r=".5cn style="fill:red; opacity:1" />
<circle cx="4.175cm cy="2.5cn r=".5cn{ style="fill:green; opacity:1" />
</ g>
<!-- Opaque group, sem -transparent green over red -->
<g style="opacity:1">
<circle cx="5.825cn cy="2.5cnm r=".5cni style="fill:red; opacity:.5" />
<circle cx="6.175cm cy="2.5cn r=".5cn' style="fill:green; opacity:.5" />
</ g>
<!-- Opaque group, sem -transparent red over green -->
<g style="opacity:1">
<circle cx="8.175cm cy="2.5cnm r=".5cnt' style="fill:green; opacity:.5" />
<circle cx="7.825cnm cy="2.5cnm r=".5cni style="fill:red; opacity:.5" />
</ g>
<l-- Goup opacity .5, sem -transparent green over red -->
<g style="opacity:.5">
<circle cx="10.175cm' cy="2.5cm' r=".5cm' style="fill:red; opacity:.5" />
<circle cx="9.825cm cy="2.5cm r=".5cnt' style="fill:green; opacity:.5" />
</ g>
</ svg>

Example opacity01
View this example as SV G (SV G-enabled browsers only)

In the example above, the top row of circles have differing opacities, ranging from 1.0 to 0.2. The
bottom row illustrates five 'g' elements, each of which contains overlapping red and green circles, as

follows:

« Thefirst group shows the opaque case for reference. The group has opacity of 1, as do the
circles.

file:///d|/public/svgspec/images/masking/opacity01.svg

« The second group shows group opacity when the elements in the group are opague.

« Thethird and fourth group show that opacity is not commutative. In the third group (which has
opacity of 1), asemi-transparent green circle is drawn on top of a semi-transparent red circle,
whereas in the fourth group a semi-transparent red circle is drawn on top of a semi-transparent
green circle. Note that area where the two circles intersect display different colors. The third
group shows more green color in the intersection area, whereas the fourth group shows more red
color.

« Thefifth group shows the multiplicative effect of opacity settings. Both the circles and the group
itself have opacity settings of .5. The result is that the portion of the red circle which does not
overlap with the green circle (i.e., the top/right of the red circle) will blend into the blue rectangle
with accumulative opacity of .25 (i.e., .5*.5), which, after blending into the blue rectangle,
resultsin ablended color which is 25% red and 75% blue.

14.6 DOM interfaces

The following interfaces are defined below: SV GClipPathElement, SV GM askElement.

Interface SVGClipPathElement

The SV GClipPathElement interface corresponds to the ‘clipPath’ element.

| DL Definition

interface SVGO i pPat hEl enent : SVCEl enent, SVGA.angSpace, SVGUnit Types {
attribute DOVBtring cl assNane;
attribute unsigned short clipPathUnits;

#i f def STYLABLESVG
/1 The followi ng pre-defined attribute collections are only
/1 available in the DOMfor Stylable SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The followi ng pre-defined attribute collections are only
/1 available in the DOM for Exchange SVG
EXCHANGESVGCont ai ner Attrs;
EXCHANGESVGFi | | StrokeAttrs;
EXCHANCGESVGGr adi ent At trs;
EXCHANGESVGGr aphi csAttrs;
EXCHANGESVGVar ker Attrs;
EXCHANGESVGText Cont ai ner Attrs;
EXCHANGESVGText El enent Attrs;

#endi f EXCHANGESVG

}s

Attributes
DOM String className
Corresponds to attribute class on the given element.

unsigned short clipPathUnits

Corresponds to attribute clipPathUnits on the given 'clipPath’ element. Takes on one of
the constants defined in SVGUnitTypes.

Interface SVGMaskElement
The SV GMaskElement interface corresponds to the 'mask’ element.

| DL Definition

interface SVGVaskEl enent : SVCEl enent, SVGA.angSpace, SVGUnit Types {
attribute DOVBtring cl assNane;
attribute unsigned short maskUnits;

attri bute SVG.ength X;
attribute SVGA.ength y;
attri bute SVG.ength wi dt h;
attri bute SVG.ength hei ght ;

#i f def STYLABLESVG
/1 The followi ng pre-defined attribute collections are only
/] available in the DOM for Stylable SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The followi ng pre-defined attribute collections are only
/] available in the DOM for Exchange SVG
EXCHANGESVGCont ai ner Attrs;
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGG adi ent Attrs;
EXCHANGESVGGr aphi csAttrs;
EXCHANGESVG\Var ker Attrs;
EXCHANGESVGText Cont ai ner Attrs;
EXCHANGESVGText El enent Attrs;
EXCHANCGESVGVi ewport Attrs;
#endi f EXCHANGESVG

b

Attributes
DOM String className
Corresponds to attribute class on the given element.
unsigned short maskUnits

Corresponds to attribute maskUnits on the given 'mask’ element. Takes on one of the
constants defined in SVGUnNitTypes.

SVGLength x

Corresponds to attribute x on the given 'mask’ element.
SVGLengthy

Corresponds to attribute y on the given 'mask’ element.
SV GLength width

Corresponds to attribute width on the given 'mask’ element.
SV GLength height

Corresponds to attribute height on the given 'mask’ element.

previous next contents properties index

previous next contents properties index

15 Filter Effects

Contents

« 15.1 Introduction

o 15.2 An example

o 15.3 The filter' element

« 15.4 The'filter' property

« 15.5 Filter effectsregion

« 15.6 Accessing the background image

« 15.7 Filter primitives overview

o 15.7.1 Overview
o 15.7.2 Common attributes
o 15.7.3 Filter primitive sub-region

« 15.8 Filter primitive 'feBlend'
« 15.9 Filter primitive 'feColorMatrix'
« 15.10 Filter primitive 'feComponentTransfer'

« 15.11 Filter primitive 'feComposite'

« 15.12 Filter primitive 'feConvolveMatrix'
« 15.13 Filter primitive feDiffusel ighting'
o 15.13.1 Light source 'feDistantLight’
o 15.13.2 Light source 'fePointLight'
o 15.13.3 Light source 'feSpotLight'
« 15.14 Filter primitive 'feDisplacementM ap'
« 15.15 Filter primitive 'feFlood'
« 15.16 Filter primitive feGaussianBlur'

« 15.17 Filter primitive 'felmage’

« 15.18 Filter primitive ‘feMerge'

« 15.19 Filter primitive feMorphology’

« 15.20 Filter primitive 'feOffset'

« 15.21 Filter primitive 'feSpecularLighting'
o 15.22 Filter primitive 'feTile

« 15.23 Filter primitive feTurbulence'

« 15.24 DOM interfaces

15.1 Introduction

This chapter describes SV G's declarative filter effects feature set, which when combined with the 2D power of SV G can describe much of the
common artwork on the web in such away that client-side generation and alteration can be performed easily.

A filter effect consists of a series of graphics operations that are applied to a given source graphic to produce a modified graphical result. The
result of the filter effect is rendered to the target device instead of the original source graphic. The following illustrates the process:

H) == b

Original source graphic Result of filter effect

View this example as SV G (SV G-enabled browsers only)

Filter effects are defined by 'filter' elements. To apply afilter effect to a graphics element or a container element, you set the value of the 'filter'
property on the given element such that it references the filter effect.

Each filter' element contains a set of filter primitives as its children. Each filter primitive performs a single fundamental graphical operation (e.g.,
ablur or alighting effect) on one or more inputs, producing a graphical result. Because most of the filter primitives represent some form of image
processing, in most cases the output from afilter primitive isasingle RGBA image.

The original source graphic or the result/output from afilter primitive can be used asinput into one or more other filter primitives. A common
application is to use the source graphic multiple times. For example, asimple filter could replace one graphic by two by adding a black copy of
original source graphic offset to create a drop shadow. In effect, there are now two layers of graphics, both with the same original source graphics.

When applied to grouping elements such as'g’, the 'filter' property applies to the contents of the group as awhole. The group's children do not

render to the screen directly; instead, the graphics commands necessary to render the children are stored temporarily. Typically, the graphics
commands are executed as part of the processing of the referenced 'filter' element via use of the keywords SourceGraphic or SourceAlpha.

15.2 An example

The following shows an example of afilter effect.
Example filtersOl1 - introducing filter effects.

<?xm version="1.0"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 03Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE@ SVG 19991203. dt d" >
<svg wi dth="7.5cnt hei ght="5cn viewBox="0 0 200 120">
<title>Exanple filtersOl.svg - introducing filter effects</title>
<desc>An exanpl e which combines nultiple filter primtives
to produce a 3D lighting effect on a graphic consisting
of the string "SVG' sitting on top of oval filled in red
and surrounded by an oval outlined in red. </ desc>
<def s>
<filter id="MyFilter">
<desc>Produces a 3D lighting effect.</desc>
<f eGaussi anBl ur in="SourceAl pha" stdDeviation="4" result="blur"/>
<feOffset in="blur" dx="4" dy="4" result="offsetBlur"/>
<f eSpecul arLi ghting i n="blur" surfaceScal e="5" specul ar Const ant ="1"
specul ar Exponent =" 10" 1i ght Col or ="whi t e"
resul t="specQut ">
<f ePoi nt Li ght x="-5000" y="-10000" z="20000"/>
</ f eSpecul ar Li ghti ng>
<feConposite i n="specQut" in2="SourceAl pha" operator="in" result="specQut"/>
<f eConposi te i n="SourceG aphi c" in2="specQut" operator="arithnetic"
k1="0" k2="1" k3="1" k4="0" result="litPaint"/>
<f eMer ge>
<f eMer geNode i n="of fsetBlur"/>
<f eMergeNode in="litPaint"/>
</ f eMer ge>
</filter>
</ def s>
<rect x="1" y="1" width="198" height="118" style="fill:#888888; stroke:blue"/>
<g style="filter:url (#WFilter)">
<g>
<path style="fill:none; stroke:#D90000; stroke-w dth: 10"
d="Ms0, 90 CO0, 90 0, 30 50, 30 L150, 30 C200, 30 200,90 150,90 z" />
<path style="fill:#D90000"
d="Ms0, 80 C30,80 30,40 60,40 L140,40 C170,40 170,80 140,80 z" />
<g style="fill:#FFFFFF, stroke: bl ack; font-size:45; font-famly:Verdana">
<text x="52" y="76">SVG</text>
</ g>
</ g>
</ g>
</ svg>

file:///d|/public/svgspec/images/filters/filters00.svg

 p—

i

Example filtersO1

View this example as SV G (SV G-enabled browsers only)

The filter effect used in the example above is repeated here with reference numbersin the left column before each of the six filter primitives:

<filter id="MyFilter">
<desc>Produces a 3D |ighting effect.</desc>
<f eGaussi anBl ur in="SourceAl pha" stdDeviation="4" result="blur"/>
<feOfset in="blur" dx="4" dy="4" result="offsetBlur"/>
<f eSpecul arLi ghting in="blur" surfaceScal e="5" specul ar Const ant ="1"
specul ar Exponent =" 10" | i ght Col or ="whi t e"
resul t="specQut">
<f ePoi nt Li ght x="-5000" y="-10000" z="20000"/>
</ f eSpecul ar Li ghti ng>
4 <feConposite in="specQut" in2="SourceAl pha" operator="in" result="specQut"/>
5 <feConposite in="SourceG aphic" in2="specQut" operator="arithnetic"
k1="0" k2="1" k3="1" k4="0" result="litPaint"/>

WN P

6 <feMerge>
<f eMer geNode i n="of fsetBlur"/>
<f eMergeNode in="litPaint"/>
</ f eMer ge>
</filter>

The following pictures show the intermediate image results from each of the six filter elements:

D@

Source graphic After filter primitivel After filter primitive2 After filter primitive 3

| e\ |
=] |

After filter primitive4 After filter primitive5 After filter primitive 6

1. Filter primitive 'feGaussianBlur' takes input Sour ceAlpha, which is the alpha channel of the source graphic. Theresult isstored in a
temporary buffer named "blur". Note that "blur" is used as input to both filter primitives 2 and 3.

2. Filter primitive 'feOffset' takes buffer "blur", shifts the result in a positive direction in both x and y, and creates a new buffer named
"offsetBlur". The effect is that of a drop shadow.

3. Filter primitive 'feSpecularLighting', uses buffer "blur" as amodel of a surface elevation and generates a lighting effect from a single point
source. The result is stored in buffer "specOut".

4. Filter primitive 'feComposite' masks out the result of filter primitive 3 by the original source graphics apha channel so that the
intermediate result is no bigger than the original source graphic.

5. Filter primitive feComposite' composites the result of the specular lighting with the original source graphic.

6. Filter primitive feMerge' composites two layers together. The lower layer consists of the drop shadow result from filter primitive 2. The
upper layer consists of the specular lighting result from filter primitive 5.

file:///d|/public/svgspec/images/filters/filters01.svg

15.3 The 'filter' element

The description of the filter' elementsis asfollows:

<IENTITY %filterExt "" >
<! ELEMENT filter (feBlend|feFlood|
f eCol or Mat ri x| f eConponent Tr ansf er |
f eConposi t e| f eConvol veMatri x| f eDi f f useLi ghti ng| f eDi spl acenent Map|
feGaussi anBl ur | f el mage| f eMer ge|
f eMor phol ogy| f eOf f set | f eSpecul ar Li ght i ng|
feTile|feTurbul ence|
ani mat e| set_
%ilterExt;)* >
<! ATTLI ST filter
Yst dAttrs;
% angSpaceAttrs;
filterUnits (userSpace | userSpaceOnUse | objectBoundi ngBox) "user Space"
X %Coordinate; # MPLI ED
y %Coordi nat e; #| MPLI ED
width %.ength; #l MPLI ED
hei ght %.ength; # MPLI ED
filterRes CDATA #l MPLI ED
%l i nkRef Attrs;
xlink:href %JRI; #l MPLI ED
ext ernal Resour cesRequi red %Bool ean; #l MPLI ED >

Attribute definitions:

filterUnits = "user Space | user SpaceOnUse | objectBoundingBox"
See Filter effects region.

X = "x-coordinate"
See Filter effects region.

y ="y-coordinate"
See Filter effects region.

width = "length"
See Filter effects region.
height = "length"

See Filter effects region.
filterRes = "<number> [<number>]"

See Filter effects region.
xlink:href ="<uri>"

A URI reference to another ‘filter' element within the current SV G document fragment. Any attributes which are defined on the referenced

filter' element which are not defined on this element are inherited by this element. If this element has no defined filter nodes, and the
referenced element has defined filter nodes (possibly due to its own href attribute), then this element inherits the filter nodes defined from
the referenced 'filter' element. Inheritance can be indirect to an arbitrary level; thus, if the referenced filter' element inherits attribute or its
filter node specification dueto its own href attribute, then the current element can inherit those attributes or filter node specifications.
Animatable: yes.

Attributes defined elsewhere:
%stdAttrs;, YolangSpaceAttrs;, %oxlinkRefAttrs;.

15.4 The 'filter' property

The description of the 'filter' property is as follows:
filter'

Value: <uri> | none | inherit

Initial: none

Appliesto: graphics and container elements

Inherited: no

Percentages: N/A

Media: visua

Animatable: yes

<uri>

A URI reference to a filter' element which defines the filter effects that shall be applied to this element.

none
Do not apply any filter effectsto this element.

15.5 Filter effects region

A 'filter' element can define aregion on the canvas on which a given filter effect applies and can provide aresolution for any intermediate
continuous tone images used to process any raster-based filter primitives. The 'filter' element has the following attributes which work together to
define thefilter effects region:

« filterUnits={ user Space | user SpaceOnUse | objectBoundingBox }. Defines the coordinate system for attributes x, y, width, height.
If filter Units=" user Space" (the default), X, y, width, height and any length values within the filter definitions represent valuesin the
current user coordinate system in place at the time when the 'filter' element is defined.
If filter Units=" user SpaceOnUse", x, y, width, height and any length values within the filter definitions represent valuesin the current
user coordinate system in place at the time when the filter' element is referenced (i.e., the user coordinate system for the element
referencing the 'filter' element via a 'filter' property).
If filter Units=" objectBoundingBox" , then x, y, width, height and any length values within the filter definitions represent valuesin an
abstract coordinate system where (0,0) is the (minx,miny) in user space of the tight bounding box of the object referencing the filter, and
(1,2) isthe (maxx,maxy) corner of the bounding box. (Note: the bounding box represents the maximum extent of the shape of the object in
X and Y with respect to the user coordinate system of the object exclusive of stroke-width.)

« X, Y, width, height, which indicate the rectangle for the largest possible offscreen buffer, where the values are either relative to the current
user coordinate system (if filterUnits="userSpace") or relative to the current object (if filterUnits="target-object"). Note that the clipping
path used to render any graphics within the filter will consists of the intersection of the current clipping path associated with the given
object and the rectangle defined by X, y, width, height. The default values for x, y, width, height are 0%, 0%, 100% and 100%,
respectively.

« filterRes (which hastheform x- pi xel s [y- pi xel s]) indicatesthe width/height of the intermediate images in pixels. If not
provided, then a reasonable default resolution appropriate for the target device will be used. (For displays, an appropriate display
resolution, preferably the current display's pixel resolution, is the default. For printing, an appropriate common printer resolution, such as
400dpi, is the default.)

For performance reasons on display devices, it is recommended that the filter effect region is designed to match pixel-for-pixel with the
background.

It is often necessary to provide padding space because the filter effect might impact bits slightly outside the tight-fitting bounding box on a given
object. For these purposes, it is possible to provide negative percentage values for x, y and percentages values greater than 100% for width,
height. For example, x="-10%" y="-10%" width="120%" height="120%".

15.6 Accessing the background image

Two possible pseudo input images for filter effects are Backgroundlmage and BackgroundAlpha, which each represent an image snapshot of the
canvas under the filter region at the time that the <filter> element is invoked. Backgroundl mage represents both the color values and alpha
channel of the canvas (i.e., RGBA pixel values), whereas BackgroundAlpha represents only the alpha channel.

Implementations of SVG user agents often will need to maintain supplemental background image buffersin order to support the
Backgroundlmage and BackgroundAlpha pseudo input images. Sometimes, the background image buffers will contain an in-memory copy of the

accumulated painting operations on the current canvas.

Because in-memory image buffers can take up significant system resources, SV G content must explicitly indicate to the SV G user agent that the
document needs access to the background image before Backgroundl mage and BackgroundA I pha pseudo input images can be used. The property
which enables access to the background image is 'enable-background':

‘enabl e-background'

Value: accumulate | new [(<x> <y> <width> <height>)] | inherit
Initial: accumulate

Appliesto: container elements

Inherited: no

Percentages. N/A

Media: visual

Animatable: no
'enable-background' is only applicable to container elements and specifies how the SV G user agents manages the accumulation of the

background image.

A value of new indicates two things:
« It enablesthe ability of children of the current container element to access the background image.

« Itindicatesthat anew (i.e, initidly fully transparent) background image canvasis established and that (in effect) all children of the current

container element shall be rendered into the new background image canvas in addition to being rendered onto the target device.

A meaning of enable-background: accumulate (theinitial/default value) depends on context:

« |f an ancestor container element has a property value of ‘enable-background:new’, then all graphics elements within the current container
element are rendered both onto the parent container element's background image canvas and onto the target device.

« Otherwise, thereis no current background image canvas, so it is only necessary to render graphics elements onto the target device. (No
need to render to the background image canvas.)

If afilter effect specifies either the Backgroundl mage or the BackgroundAlpha pseudo input images and no ancestor container element has a

property value of 'enable-background:new', then the background image request is technically in error. Processing will proceed without interruption
(i.e., no error message) and a fully transparent image shall be provided in response to the request.

The optional (<x>,<y>,<width>,<height>) parameters on the new value indicate the sub-region of user space where access to the background

image is allowed to happen. These parameters enable the SV G user agent potentially to allocate smaller temporary image buffers than the default
values, which might require the SV G user agent to allocate buffers as large as the current viewport. Thus, the values <x>,<y>,<width>,<height>
act as a clipping rectangle on the background image canvas.

15.7 Filter primitives overview

15.7.1 Overview

This section describes the various filter primtives that can be assembed to achieve a particular filter effect.

Unless otherwise stated, al image filters operate on linear premultiplied RGBA samples. Filters which work more naturally on non premultiplied
data (feColorMatrix and feComponentTransfer) will temporarily undo and redo premultiplication as specified. All raster effect filtering operations
take 1 to N input RGBA images, additiona attributes as parameters, and produce a single output RGBA image.

15.7.2 Common attributes

The following attributes are available for most of the filter primitives:

<IENTITY %filter_primtive_attributes
"X Y%Coordinate; #l MPLI ED

y %Coordi nate; #l MPLI ED
width %.ength; # MPLI ED

hei ght %.ength; # MPLI ED
result CDATA #| MPLI ED' >

<IENTITY %filter_primtive_attributes_with_in
"Oilter_primtive_attributes;
in CDATA #l MPLI ED" >

Attribute definitions:
X ="<coordinate>"

The minimum x coordinate for the sub-region which restricts calculation and rendering of the given filter primitive. Seefilter region
sub-region.
y = "<coordinate>"
The minimum y coordinate for the sub-region which restricts cal culation and rendering of the given filter primitive. Seefilter region
sub-region.
width = "<length>"
The width of the sub-region which restricts calculation and rendering of the given filter primitive. See filter region sub-region.
height = "<length>"
The height of the sub-region which restricts cal culation and rendering of the given filter primitive. Seefilter region sub-region.

result = "<filter-primitive-reference>"
Assigned name for thisfilter primitive. If supplied, then graphics that results from processing this filter primitive can be referenced by an
in attribute on a subsequent filter primitive within the same 'filter' element. If no value is provided, the output will only be available for
re-use as the implicit input into the next filter primitive if that filter primitive provides no value for itsin attribute.
Note that a <filter-primitive-reference> isnot an XML ID; instead, a <filter-primitive-reference> is only are meaningful within agiven
‘filter' element and thus have only local scope. It islega for the same <filter-primitive-reference> to appear multiple times within the same
filter' element. When referenced, the <filter-primitive-reference> will use the closest preceding filter primitive with the given result.

in ="SourceGraphic | SourceAlpha | Backgroundimage | BackgroundAlpha | FillPaint | SrokePaint | <filter-primitive-reference>"

Identifies input for the given filter primitive. The value can be either one of six keywords or can be a string which matches a previous
result attribute value within the same 'filter' element. If no value is provided and thisisthe first filter primitive, then thisfilter primitive

will use SourceGraphic asitsinput. If no valueis provided and this is a subsequent filter primitive, then thisfilter primitive will use the
result from the previous filter primitive asits input.

If the value for result appears multiple times within a given filter' element, then areference to that result will use the closest preceding
filter primitive with the given value for attribute result. Forward references to results are an error.

Definitions for the six keywords:
SourceGraphic

This keyword represents the graphics elements that were the original input into the 'filter' element. For raster effectsfilter
primitives, the graphics elements will be rasterized into an initially clear RGBA raster in image space. Pixels |eft untouched by the
origina graphic will be left clear. Theimage is specified to be rendered in linear RGBA pixels. The alpha channel of thisimage
captures any anti-aliasing specified by SVG. (Since theraster islinear, the alpha channel of thisimage will represent the exact
percent coverage of each pixel.)

SourceAlpha

This keyword represents the graphics elements that were the original input into the filter' element. SourceAlphahas al of the same
rules as SourceGraphic except that only the alpha channel is used. The color channels of the input image are implicitly black and
are unaffected by any image processing operations. The SourceAlphaimage will reflect any opacity settings in the SourceGraphic.
If this option is used, then some implementations might need to rasterize the graphics elements in order to extract the alpha
channel.

Backgroundimage

This keyword represents an image snapshot of the canvas under the filter region at the time that the filter' element was invoked.
See Accessing the background image.

BackgroundAlpha
Same as Backgroundl mage except only the alpha channel is used. See SourceAlpha and Accessing the background image.
FillPaint

This keyword represents the value of the 'fill' property on the target element for the filter effect. The FillPaint image has
conceptually infinite extent. Frequently thisimage is opague everywhere, but it might not beif the "paint” itself has alpha, asin the
case of an alphagradient or transparent pattern.

StrokePaint

This keyword represents the value of the 'stroke' property on the target element for the filter effect. Same as The StrokePaint image

has conceptually infinite extent. Frequently thisimage is opaque everywhere, but it might not be if the "paint" itself hasalpha, asin
the case of an aphagradient or transparent pattern.

15.7.3 Filter primitive sub-region

All filter primitives have attributes x, y, width and height which identify a sub-region which restricts calculation and rendering of the given filter
primitive. These attributes are defined according to the same rules as other filter primitives coordinate and length attributes.

X, Y, width and height default to the union (i.e., tightest fitting bounding box) of the sub-regions defined for all referenced nodes. If there are no
referenced nodes (e.g., for ‘felmage’ or 'feTurbulence', which have no specified value for in, or if in="SourceGraphic") or for feTile (whichis

specia), the default subregion is 0%,0%,100%,100%, where percentages are relative to the dimensions of the filter region.

X, ¥, width and height act as a hard clip clipping rectangle.

All intermediate offscreens are defined to not exceed the intersection of X, y, width and height with the filter region. The filter region and any of

the x, y, width and height sub-regions are to be set up such that all offscreens are made big enough to accommodate any pixels which even partly
intersect with either the filter region or the x,y,width,height subregions.

'felmage’ scales the referenced image to fit exactly into the sub-region specified by x, y, width and height.
‘feTile references a previous filter primitive and then stitches the tiles together based on the x, y, width and height values of the referenced filter
primitive.

15.8 Filter primitive 'feBlend'

Thisfilter composites two objects together using commonly used imaging software blending modes. It performs a pixel-wise combination of two
input images.

<! ELEMENT feBl end (ani nate|set)* >
<I ATTLI ST feBl end

Yst dAttrs;
%ilter primtive attributes_with in;
node (normal | multiply | screen | darken | lighten) "nornal"

in2 CDATA #REQUI RED >

Attribute definitions:
mode = "normal | multiply | screen | darken | lighten"
One of the image blending modes (see table below). Default is: normal
in2 = "(seein attribute)"
The second input image to the blending operation. This attribute can take on the same values as the in attribute.
Attributes defined elsewhere:
%stdAttrs;, %filter primitive attributes with in;.

For all feBlend modes, the result opacity is computed as follows:

ar =1 - (1-ga)*(1-qb)

For the compositing formulas below, the following definitions apply:

cr = Result color (RGB) - prenultiplied

gqa = Qpacity value at a given pixel for image A

gb = Opacity value at a given pixel for inmage B

ca = Color (RGB) at a given pixel for image A - prenultiplied
cb = Color (RGB) at a given pixel for image B - prenultiplied

The following table provides the list of available image blending modes:

[I mage Blending Mode Formulafor computing result color

normal cr=(1-ga)*cb+ca

multiply cr = (1-ga)*cb + (1-gb)*ca + ca*cb

|screen cr=ch+ca-ca* cb

]darken cr=Min((1-0a) * cb+ca (1-qgb)* ca+ch)
[Iighten |cr:Max((1-qa)* cb+ca, (1-qb) * ca+ ch)

Example feBlend shows examples of the five blend modes.

<?xm version="1.0"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e// EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg wi dth="5cn' hei ght="5cnt vi enBox="0 0 500 500">
<title>Exanple feBlend - Exanples of feBlend nodes</title>
<desc>Five text strings blended into a gradient,
with one text string for each of the five feBlend nodes. </ desc>
<def s>
<linearGadient id="M/G adient" gradientUnits="userSpaceOnUse"
x1="100" y1="0" x2="300" y2="0">
<stop offset="0" styl e="stop-col or: #000000"/ >
<stop offset=".33" style="stop-color:#ffffff"/>
<stop of fset=".67" style="stop-col or:#ff0000"/>
<stop offset="1" styl e="stop-col or: #808080"/ >
</linear G adi ent >
<filter id="Normal">
<f eBl end node="nornmal " i n2="Backgroundl mage" i n="SourceG aphic"/>
</filter>
<filter id="Multiply">
<f eBl end node="nul tiply" in2="Backgroundl mage" i n="SourceG aphic"/>
</filter>
<filter id="Screen">
<f eBl end node="screen" in2="Backgroundl mage" in="SourceG aphic"/>
</filter>
<filter id="Darken">
<f eBl end node="dar ken" i n2="Backgroundl mage" in="SourceG aphic"/>

</filter>
<filter id="Lighten">
<f eBl end node="1i ghten" in2="Backgroundl mage" i n="SourceG aphic"/>
</filter>
</ def s>
<rect style="fill:none; stroke: bl ue"

x="1" y="1" wi dt h="498" hei ght ="498"/>
<g styl e="enabl e- background: new'>
<rect x="100" y="20" w dth="300" hei ght="460" style="fill:url (#WG adient)"/>
<g style="font-famly: Verdana; font-size:75; fill:#888888; fill-opacity:.6">
<text x="50" y="90" style="filter:url (#Normal)">Normal </text>
<text x="50" y="180" style="filter:url (#Miltiply)">Mltiply</text>
<text x="50" y="270" style="filter:url (#Screen)">Screen</text>
<text x="50" y="360" style="filter:url (#Darken)">Darken</text>
<text x="50" y="450" style="filter:url (#Li ghten)">Li ghten</text>
</ g>
</ g>
</ svg>

Example feBlend

View this example as SV G (SV G-enabled browsers only)

15.9 Filter primitive 'feColorMatrix'

Thisfilter applies a matrix transformation:

| R | | a00 a0l a02 a03 a04 | | R
| G | | al0 all al2 al3 al4 | | G|
| B | = | a20 a21 a22 a23 a24 | * | B |
| A | a30 a31 a32 a33 a34 | | A
| 1 | o o 0o 0 1 | | 1]

on the RGBA color and alpha values of every pixel on the input graphics to produce aresult with a new set of RGBA color and a pha values.

The calculations are performed on non-premultiplied color values. If the input graphics consists of premultiplied color values, those values are
automatically converted into non-premultiplied color values for this operation.

These matrices often perform an identity mapping in the alpha channel. If that is the case, an implementation can avoid the costly undoing &
redoing of the premultiplication for all pixelswith A = 1.

<! ELEMENT feCol or Matrix (aninate|set)* >
<I ATTLI ST feCol or Matrix
Yst dAttrs;
%ilter primtive attributes with in;
type (matrix | saturate | hueRotate | |umi nanceToAl pha) "matrix"
val ues CDATA #| MPLI ED >

Attribute definitions:
type = "matrix | saturate | hueRotate | luminanceToAlpha"

Indicates the type of matrix operation. The keyword matrix indicates that a full 5x4 matrix of values will be provided. The other keywords
represent convenience shortcuts to allow commonly used color operations to be performed without specifying a complete matrix.

values = "list of <number>s"
The contents of values depends on the value of attribute type:

o For type="matrix", values is a space-separated list of 20 element color transform (a00 a01 a02 a03 a04 al0 all ... a34). For
example, the identity matrix could be expressed as:

type="matrix"
values="1 0000 01000 00100 00O010"

o For type="saturate", valuesis single real number value (0 to 1) or one percentage value (e.g., 50%). A saturate operation is
equivalent to the following matrix operation:

| R | | 0.213+0.787s 0.715-0.715s 0.072-0.072s 0 0| | R|
| G | | 0.213-0.213s 0.715+0.285s 0.072-0.072s 0 0| | G|
| B | = |0.213-0.213s 0.715-0.715s 0.072+0.928s 0 O | * | B |

| A | 0 0 01 0] | A]

file:///d|/public/svgspec/images/filters/feBlend.svg

|1 | 0 0 00 1] | 1]

o For type="hueRotate", valuesis single one real number value (degrees). A hueRotate operation is equivalent to the following
matrix operation:

| R | | a00 a0l a02 0 0| | R|
| G | | al0 all al2 0 0| | G]
| B | = | a20 a21 a22 0 O * | B|
| A o o0 0 1 0] | A]
|1 o 0o o0 0 1] | 1]

where the terms a00, a01, etc. are calculated as follows:

| a0l a0l a02 | [+0.213 +0.715 +0.072]
| al0 all al2 | = [+0.213 +0.715 +0.072] +
| a20 a21 a22 | [+0.213 +0. 715 +0.072]

+

[+0.787 -0.715 -0.072]
cos(hueRotate value) * [-
[-

0
0.212 +0.285 -0.072] +
0.213 -0.715 +0.928]

[-0.213 -0.715+0. 928]
sin(hueRotate value) * [+0.143 +0.140-0.283]
[-0.787 +0.715+0. 072]

Thus, the upper |eft term of the hue matrix turns out to be:

. 213 + cos(hueRotate value)*.787 - sin(hueRotate val ue)*.213
o For type="luminanceToAlpha’, valuesis not applicable. A luminanceToAlpha operation is equivalent to the following matrix

operation:
| R | | 0 0 0 0 0] | R]
| G | | 0 0 00 0] | GJ
| B | =1 0 0 0 0 0] *| B
| A | 0.299 0.587 0.114 0 O] | A|
|1 | 0 0 00 1] | 1]

Attributes defined elsewhere:
Y%stdAttrs;, %filter primitive attributes with in;.

Example feColorMatrix shows examples of the four types of feColorMatrix operations.

<?xm version="1.0"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="8cnf hei ght="5cn vi ewBox="0 0 800 500">
<title>Exanpl e feCol orMatrix - Exanples of feColorMatrix operations</title>
<desc>Fi ve text strings showi ng the effects of feColorMatrix:
an unfiltered text string acting as a reference,
use of the feColorMatrix matrix option to convert to grayscal e,
use of the feColorMatrix saturate option,
use of the feCol orMatrix hueRotate option,
and use of the feCol orMatrix |um nanceToAl pha option. </ desc>
<def s>
<linearGadient id="MG adient" gradientUnits="userSpaceOnUse"
x1="100" y1="0" x2="500" y2="0">
<stop offset="0" style="stop-color: #ff0o0off"/>
<stop offset=".33" style="stop-col or: #88ff88"/>
<stop of fset=".67" style="stop-col or:#2020ff"/>
<stop offset="1" styl e="stop-col or: #d00000"/ >
</1inear G adi ent >
<filter id="Matrix" filterUnits="objectBoundi ngBox"
x="0% y="0% w dth="100% height="100% >
<feCol orMatrix type="matrix" in="SourceG aphic"
values=".33 .33 .33 00
.33.33.3300
.33.33.3300
.33 .33 .33 00"/>
</filter>
<filter id="Saturate40" filterUnits="objectBoundi ngBox"
x="09% y="0% w dth="100% height="100% >
<feCol orMatri x type="saturate" in="SourceG aphic" val ues="40%/>
</filter>
<filter id="HueRotate90" filterUnits="objectBoundi ngBox"
x="0% y="0% w dth="100% height="100% >
<feCol orMatri x type="hueRotate" in="SourceG aphic" val ues="90"/>
</filter>
<filter id="Lum nanceToAl pha" filterUnits="objectBoundi ngBox"
Xx="09% y="0% wi dth="1009% hei ght="1009% >
<feCol orMatrix type="I|um nanceToAl pha" in="SourceG aphic" result="a"/>
<f eConposi te i n="SourceG aphic" in2="a" operator="in" />

</filter>
</ def s>
<rect style="fill:none; stroke:blue"
x="1" y="1" wi dt h="798" hei ght ="498"/>
<g style="font-fam ly: Verdana; font-size:75;
font-wei ght:bold; fill:url(#WMG adient)">
<rect x="100" y="0" wi dth="500" height="20" />
<text x="100" y="90">Unfiltered</text>
<text x="100" y="190" style="filter:url (#Matrix)">Matrix</text>
<text x="100" y="290" style="filter:url (#Saturate20)">Saturate</text>
<text x="100" y="390" style="filter:url (#HueRotate90)">HueRot at e</t ext >
<text x="100" y="490" style="filter:url (#Lum nanceToAl pha)">Luni nance</text>

</ svg>
U tered

S rate
H Lotate

]

Example feColorMatrix

View this example as SV G (SV G-enabled browsers only)

15.10 Filter primitive 'feComponentTransfer'

Thisfilter primitive performs component-wise remapping of data as follows:

feFuncR(R)
= feFuncq G)
feFuncB(B)
= feFuncA(A)

> W QA
1

for every pixel. It allows operations like brightness adjustment, contrast adjustment, color balance or thresholding.

The calculations are performed on non-premultiplied color values. If the input graphics consists of premultiplied color values, those values are
automatically converted into non-premultiplied color values for this operation. (Note that the undoing and redoing of the premultiplication can be
avoided if feFuncA isthe identity transform and all alpha values on the source graphic are set to 1.)

<! ENTITY % conponent _transfer_function_attributes
"type (identity | table | linear | gammma) #REQUI RED

tabl eVal ues CDATA #l MPLI ED

sl ope YNunber; #l MPLI ED

intercept Yunber; #l MPLI ED

anpl i tude %\unber; #l MPLI ED

exponent Y%\unber:; #l MPLI ED

of fset YNunber; #l MPLI ED" >

<! ELEMENT feConponent Transfer (feFuncR?, feFuncG?, f eFuncB?, f eFuncA?) >
<! ATTLI ST f eConponent Tr ansf er

YstdAttrs;

%ilter primtive attributes with_in; >

<! ELEMENT f eFuncR (ani mate|set)* >
<! ATTLI ST feFuncR
Yst dAttrs;
%onponent _transfer_function_attributes; >

<! ELEMENT feFuncG (ani nate|set)* >
<! ATTLI ST feFuncG
Yst dAttrs;
%onponent _transfer_function_attributes; >

file:///d|/public/svgspec/images/filters/feColorMatrix.svg

<! ELEMENT feFuncB (ani nate|set)* >
<! ATTLI ST feFuncB
Yst dAttrs;
%onponent _transfer_function_attributes; >

<! ELEMENT feFuncA (ani nate|set)* >
<! ATTLI ST feFuncA
Yst dAttrs;
%onponent _transfer function_attributes; >

The specification of the transfer functionsis defined by the sub-elements to ‘feComponentTransfer':
'feFuncR', transfer function for red component of the input graphic
‘feFuncG', transfer function for green component of the input graphic
'feFuncB', transfer function for blue component of the input graphic
'feFuncA', transfer function for a pha component of the input graphic

The attributes below apply to sub-elements 'feFuncR', 'feFuncG', 'feFuncB' and 'feFuncA' define the transfer functions.

Attribute definitions:
type = "identity | table | linear | gamma"

Indicates the type of component transfer function. The type of function determines the applicability of the other attributes.

o For identity:
c =c

o For table, the function is defined by linear interpolation into alookup table defined by attribute tableValues. Interpolations use the
following formula:
k/N <= C< (k+1)/N=>C =vk + (C- kINN*N* (vk+1 - vk)

o For linear, the function is defined by the following linear equation:
C = slope * C+ intercept

o For gamma, the function is defined by the following exponential function:
C = anplitude * pow(C, exponent) + offset

tableVaues = "(list of <number>s)"

When type="table", the list of <number>sv0,v1,...vn which define the lookup table.

slope = "<number>"

When type="linear", the slope of the linear function.
intercept = "<number>"

When type="linear", the intercept of the linear function.
amplitude = "<number>"

When type="gamma', the amplitude of the gamma function.
exponent = "<number>"

When type="gamma’, the exponent of the gamma function.
offset = "<number>"

When type="gamma', the offset of the gamma function.
Attributes defined elsewhere:

%stdAttrs;, %filter primitive attributes with in;.

Example feComponentTransfer shows examples of the four types of feComponentTransfer operations.

<?xm version="1.0"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e// EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="8cn{ hei ght="4cn{ vi ewBox="0 0 800 400">
<titl e>Exanpl e feConponent Transfer - Exanpl es of feConponentTransfer operations</title>
<desc>Four text strings showi ng the effects of feConponentTransfer:
an identity function acting as a reference,
use of the feConponentTransfer table option,
use of the feConponentTransfer |inear option,
and use of the feConponent Transfer gamma option. </ desc>
<def s>
<linearGadient id="MWGadient" gradientUnits="user SpaceOnUse"
x1="100" y1="0" x2="600" y2="0">
<stop of fset="0" styl e="stop-col or: #ff0000"/ >
<stop of fset=".33" style="stop-col or: #00f f 00"/ >
<stop of fset=".67" style="stop-col or:#0000ff"/>
<stop of fset="1" styl e="stop-col or: #000000"/ >
</linear Gradi ent >
<filter id="ldentity" filterUnits="objectBoundi ngBox"

x="0% y="0% wi dth="100% hei ght="100% >
<f eConponent Tr ansf er >
<f eFuncR type="identity"/>
<f eFuncG type="identity"/>
<feFuncB type="identity"/>
<f eFuncA type="identity"/>
</ f eConponent Tr ansf er >
</filter>
<filter id="Table" filterUnits="objectBoundi ngBox"
x="0% y="0% wi dth="100% hei ght="100% >
<f eConmponent Tr ansf er >
<f eFuncR type="t abl e" tablevalues="0 0 1 1"/>
<f eFuncG type="tabl e" tabl evValues="1 1 0 0"/>
<f eFuncB type="t abl e" tablevalues="0 1 1 0"/>
</ f eConponent Tr ansf er >
</filter>
<filter id="Linear" filterUnits="objectBoundi ngBox"
x="0% y="0% w dth="100% hei ght="100% >
<f eConponent Tr ansf er >

<f eFuncR type="linear" slope=".5" intercept=".25"/>
<feFuncG type="linear" slope=".5" intercept="0"/>
<f eFuncB type="linear" slope=".5" intercept=".5"/>
</ f eConponent Tr ansf er >
</filter>

<filter id="Gamma" filterUnits="objectBoundi ngBox"
X="09% y="0% w dth="100% height="1009% >
<f eConponent Tr ansf er >
<f eFuncR type="ganmmm" anplitude="2" exponent="5" offset="0"/>
<f eFuncG type="gamu" anplitude="2" exponent="3" offset="0"/>
<f eFuncB type="ganma" anplitude="2" exponent="1" offset="0"/>
</ f eConmponent Tr ansf er >
</filter>
</ def s>
<rect style="fill:none; stroke: bl ue"
x="1" y="1" wi dth="798" hei ght="398"/>
<g style="font-famly: Verdana; font-size:75;
font-weight:bold; fill:url(#WG adient)">
<rect x="100" y="0" wi dth="600" height="20" />
<text x="100" y="90">ldentity</text>
<text x="100" y="190" style="filter:url (#Table)">Tabl eLookup</text>
<text x="100" y="290" style="filter:url (#Linear)">Li near Func</text>
<text x="100" y="390" style="filter:url(#Gamma)">GammaFunc</text>
</ g>
</ svg>

Identity
1blelL

LinearFunc

GammaFunc

Example feComponentTransfer

View this example as SV G (SV G-enabled browsers only)

15.11 Filter primitive 'feComposite’

Thisfilter performs the combination of the two input images pixel-wise in image space using one of the Porter-Duff [PORTERDUFF

compositing operations: over, in, atop, out, xor. Additionally, a component-wise arithmetic operation (with the result clamped between [0..1]) can
be applied.

The arithmetic operation is useful for combining the output from the 'feDiffuseLighting' and 'feSpecularLighting' filters with texture data. It isalso
useful for implementing dissolve. If the arithmetic operation is chosen, each result pixel is computed using the following formula:
result = k1*i1*i2 + k2*i1 + k3*i2 + k4

For these operations, the extent of the resulting image can be affected. In other words, even if two images do not overlap in image space, the
extent for over will essentially include the union of the extents of the two input images.

file:///d|/public/svgspec/images/filters/feComponentTransfer.svg

<! ELEMENT f eConposite (animate|set)* >
<! ATTLI ST feConposite

YstdAttrs:;

%ilter primtive attributes with_ in;

operator (over | in | out | atop | xor | arithnetic) "over"
k1 % nt eger: #l MPLI ED
k2 % nteger; # MPLIED

3 % nteger; # MPLIED

=~ = =<

k4 % nteger; # MPLI ED
in2 CDATA #REQUI RED >

=

Attribute definitions:
operator ="over | in| out | atop | xor | arithmetic"

Not yet written.
k1 ="<integer>"

Either 0 or 1. Only applicable if operator="arithmetic". The default valueisO.
k2 ="<integer>"

Either 0 or 1. Only applicable if operator="arithmetic". The default valueisO.
k3 ="<integer>"

Either 0 or 1. Only applicable if operator="arithmetic". The default valueisO.
k4 = "<integer>"

Either 0 or 1. Only applicable if operator="arithmetic". The default valueisO.
in2 = "(seein attribute)"

The second input image to the compositing operation. This attribute can take on the same values as the in attribute.
Attributes defined elsewhere:

%stdAttrs;, %filter primitive attributes with in;.

Example feComposite shows examples of the four types of feComposite operations.

<?xm version="1.0"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. org/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTDY svg- 20000303- st yl abl e. dt d" >
<svg wi dt h="11cnf hei ght="3.25cnt vi ewBox="0 0 1100 325">
<titl e>Exanpl e feConposite - Exanples of feConposite operations</title>
<desc>Si x pairs of overlapping triangles depicting
the six different feConposite operators.</desc>
<def s>
<path id="Bluel00" d="M O O L 100 O L 100 100 z" style="fill:#00ffff"/>
<path id="Red100" d="M 0 O L O 100 L 100 O z" style="fill:#ffo0ff"/>
<path id="Blue50" d="M 0 125 L 100 125 L 100 225 z" style="fill:#00ffff; fill-opacity:.5"/>
<path id="Red50" d="M O 125 L 0 225 L 100 125 z" style="fill:#ffo00ff; fill-opacity:.5"/>
<filter id="over" filterUnits="objectBoundi ngBox" x="-5% y="-5% w dth="110% height="110% >
<feFl ood style="flood-color:# fffff; flood-opacity:1" result="flood"/>
<f eConposi te i n="Sour ceG aphi c" in2="Backgroundl nage" operator="over" result="conmp"/>
<f eMer ge> <f eMergeNode i n="fl ood"/> <feMergeNode in="conmp"/> </feMerge>
</filter>
<filter id="in" filterUnits="objectBoundi ngBox" x="-5% y="-5% w dth="110% hei ght="110% >
<feFl ood style="flood-color:# fffff; flood-opacity:1" result="flood"/>
<f eConposi te i n="Sour ceG aphi c" in2="Backgroundl mage" operator="in" result="conp"/>
<f eMer ge> <f eMergeNode i n="fl ood"/> <feMergeNode in="comp"/> </feMerge>
</filter>
<filter id="out" filterUnits="objectBoundi ngBox" x="-5% y="-5% width="110% height="110% >
<feFl ood style="flood-color:#f fffff; flood-opacity:1" result="flood"/>
<f eConposi te i n="Sour ceG aphi c" in2="Backgroundl mage" operator="out" result="conmp"/>
<f eMer ge> <f eMergeNode i n="fl ood"/> <feMergeNode i n="conp"/> </feMerge>
</filter>
<filter id="atop" filterUnits="objectBoundi ngBox" x="-5% y="-5% w dth="110% height="110% >
<feFl ood style="flood-color:#ffffff; flood-opacity:1" result="flood"/>
<f eConposi te i n="Sour ceG aphi c" in2="Backgroundl mage" operator="atop" result="conmp"/>
<f eMer ge> <feMergeNode in="fl ood"/> <feMergeNode in="comp"/> </feMerge>
</filter>
<filter id="xor" filterUnits="objectBoundi ngBox" x="-5% y="-5% w dth="110% hei ght="110% >
<feFl ood style="flood-color:# fffff; flood-opacity:1" result="flood"/>
<f eConposi te i n="Sour ceG aphi c" in2="Backgroundl nage" operator="xor" result="conp"/>
<f eMer ge> <f eMergeNode i n="fl ood"/> <feMergeNode in="comp"/> </feMerge>
</filter>
<filter id="arithnmetic" filterUnits="objectBoundi ngBox"
x="-5% y="-59% w dth="110% height="110% >
<feFl ood style="flood-color:# fffff; flood-opacity:1" result="flood"/>
<f eConposi te i n="SourceG aphi c" in2="Backgroundl nage" result="conp"
operator="arithmetic" kl=".5" k2=".5" k3=".5" k4=".5"/>
<f eMer ge> <feMergeNode in="fl ood"/> <feMergeNode i n="conp"/> </feMerge>
</filter>
</ def s>
<rect style="fill:none; stroke:blue" x="1" y="1" w dth="1098" hei ght="323"/>
<g style="font-fam|y: Verdana; font-size:40; shape-rendering:crispEdges">
<text x="15" y="75">opacity 1.0</text>

<text x="15" y="200">opacity 0.5</text>

<g transform="transl ate(275, 25)" styl e="enabl e- background: new'>
<use xlink: href="#Bl uel00"/>
<use xlink:href="#Red100" style="filter:url (#over)"/>

</ g>

<g transform="transl ate(275, 25)" styl e="enabl e- background: new'>
<use xlink: href="#Bl ue50"/ >
<use xlink:href="#Red50" style="filter:url (#over)"/>
<text x="5" y="275">over</text>

</ g>

<g transform="transl at e(400, 25)" styl e="enabl e- background: new'>
<use xlink: href="#Bl uel00"/>
<use xlink:href="#Red100" style="filter:url (#in)"/>

</ g>

<g transform="transl at e(400, 25)" styl e="enabl e- background: new'>
<use xlink: href="#Bl ue50"/ >
<use xlink:href="#Red50" style="filter:url (#in)"/>
<text x="35" y="275">in</text>

</ g>

<g transform="transl ate(525, 25)" styl e="enabl e- background: new'>
<use xlink: href="#Bl uel00"/>
<use xlink: href="#Red100" style="filter:url (#out)"/>

</ g>

<g transform="transl ate(525, 25)" styl e="enabl e- background: new' >
<use xlink: href="#Bl ue50"/ >
<use xlink: href="#Red50" style="filter:url (#out)"/>
<text x="15" y="275">out</text>

</ g>

<g transform="transl at e(650, 25)" styl e="enabl e- background: new'>
<use xlink: href="#Bl uel00"/>
<use xlink: href="#Red100" style="filter:url (#atop)"/>

</ g>

<g transform="transl at e(650, 25)" styl e="enabl e- background: new' >
<use xlink: href="#Bl ue50"/>
<use xlink:href="#Red50" style="filter:url (#atop)"/>
<text x="10" y="275">atop</text>

</ g>

<g transform="transl ate(775, 25)" styl e="enabl e- background: new'>
<use xlink: href="#Bl uel00"/>
<use xlink: href="#Red100" style="filter:url (#xor)"/>

</ g>

<g transform="transl ate(775, 25)" styl e="enabl e- background: new'>
<use xlink: href="#Bl ue50"/>
<use xlink: href="#Red50" style="filter:url (#xor)"/>
<text x="15" y="275">xor</text>

</ g>

<g transform="transl at e(900, 25)" styl e="enabl e- background: new'>
<use xlink: href="#Bl uel00"/>
<use xlink:href="#Red100" style="filter:url (#arithnmetic)"/>

</ g>

<g transform="transl ate(900, 25)" styl e="enabl e- backgr ound: new' >
<use xlink: href="#Bl ue50"/>
<use xlink: href="#Red50" style="filter:url (#arithmetic)"/>
<text x="-25" y="275">arithnetic</text>

</ g>

</ g>
</ svg>

opacity 1.0 ' v } v

opacity 0.5

over in out atop xor arithmetic

Example feComposite

View this example as SV G (SV G-enabled browsers only)

15.12 Filter primitive 'feConvolveMatrix'

feConvolveMatrix applies a matrix convolution filter effect. A convolution combines pixelsin the source image with neighboring pixelsto
produce aresulting image. A wide variety of imaging operations can be achieved through convolutions, including blurring, edge detection,
sharpening, embossing and beveling.

A matrix convolution is based on an n-by-m matrix (the convolution kernel) which describes how a given pixel value in the source imageis
combined with its neighboring pixel values to produce aresulting pixel value. Each result pixel is determined by applying the kernel matrix to the

file:///d|/public/svgspec/images/filters/feComposite.svg

corresponding source pixel and its neighboring pixels.

To illustrate, suppose you have a source image which is 5 pixels by 5 pixels, whose color values are as follows:

0 20 40 235 235
100 120 140 235 235
200 220 240 235 235
225 225 255 255 255
225 225 255 255 255

and you define a 3-by-3 convolution kernel as follows:

ENIN N
XL EN
©ow

Let's focus on the pixel at the second row and second column of the image (source pixel valueis 120). Assuming the simplest case (where the
source image's pixel grid aligns perfectly with the kernel's pixel grid) and assuming default values for attributes divisor, targetX and targetY, then
resulting pixel value will be:

(1* 0+ 2* 20 + 3* 40 +
4*100 + 5*120 + 6*140 +
7*200 + 8*220 + 9*240) / (1+2+3+4+5+6+7+8+9)

Because they operate on pixels, matrix convolutions are inherently resolution-dependent. To make 'feConvolveMatrix produce
resol ution-independent results, an explicit value should be provided for either the filterRes attribute on the filter' element and/or attribute

kernelUnitLength.

kernelUnitLength, in combination with the other attributes, defines an implicit pixel grid in the filter effects coordinate system (i.e., the coordinate
system established by the filterUnits attribute). If the pixel grid established by kernelUnitLength does not align perfectly with the pixel grid
established by attribute filterRes, then the source image will be temporarily resampled to align its pixels with kernel UnitLength. The convolution
happens on the resampled image. After applying the convolution, the image is resampled back to its original resolution.

<! ELEMENT feConvol veMatrix (ani mate|set)* >
<! ATTLI ST feConvol veMatrix
%ilter primtive attributes_with_in;
order CDATA #REQUI RED
kernel Matri x CDATA #REQUI RED
di vi sor %\Wunber; # MPLI ED
target X % nteger; #l MPLI ED
targetY % nteger; #l MPLIED
edgeMobde (duplicate|w ap|none) "duplicate"”
kernel Unit Lengt h CDATA #| MPLI ED >

Attribute definitions:
order = "<orderX> [<orderY>]"

Indicates the number of cellsin each dimension for kernelMatrix. The values provided must be <integer>s greater than zero. If two values

are provided, the values are separated by space characters and/or a comma. <orderX> indicates the number of columnsin the matrix.
<orderY > indicates the number of rows in the matrix. If <orderY > is not provided, it defaults to <orderX>.

A typical valueis order="3". It isrecommended that only small values (e.g., 3) be used; higher values may result in very high CPU
overhead and usually do not produce results that justify the impact on performance.

The default valueis"3".

kernelMatrix = "<list of numbers>"

Thelist of <number>sthat make up the kernel matrix for the convolution. Values are separated by space characters and/or acomma. The
number of entriesin the list must equal <orderX> times <orderY>.

divisor = "<number>"
After applying the kernelMatrix to the source image to yield a number, that number is divided by divisor to yield the final destination color
value. A divisor that isthe sum of all the matrix values tends to have an evening effect on the overall color intensity of the result. It isan
error to specify adivisor of zero. The default value is the sum of all valuesin kernelMatrix, with the exception that if the sum is zero, then
the divisor isset to 1.

targetX = "<integer>"

Determines the positioning in X of the convolution matrix relative to a given target pixel in the source image. The leftmost column of the
matrix is column number zero. The value must be such that: 0 <= targetX < orderX. By default, the convolution matrix is centered in X
over each pixel of the sourceimage (i.e., targetX = floor (orderX / 2)).

targetY ="<integer>"

Determines the positioning in Y of the convolution matrix relative to a given target pixel in the source image. The topmost row of the
matrix isrow number zero. The value must be such that: 0 <=targetY < orderY. By default, the convolution matrix is centered in Y over
each pixel of the sourceimage (i.e., targetY = floor (orderY /2)).

edgemode = "duplicate | wrap | none"

Determines how to extend the source image as necessary with color values so that the matrix operations can be applied when the kernel is
positioned at or near the edge of the source image.

"duplicate" indicates that the source image is extended along each of its borders as necessary by duplicating the color values at the given
edge of the source image.

Oiginal N by- M|mage where mFM 1 and n=N-1:

1112 ... 1m 1M
21 22 ... 2m2M
nln2 ... nmnM
NL N2 ... Nm NM

Ext ended by two pixels using "duplicate":

1111 11 12 ImiM 1M 1M
1111 1112 ... ImIM 1M 1M
1111 1112 ... ImIM 1M 1M
2121 2122 ... 2m2M 2M2M
ninl nln2...nmnM nMnM
NI NI NLN2... NMNM NV M
NLNL NN ... NmMNM NM M
NI NI NLN2... NMNM NV NM

"wrap" indicates that the source image is extended by taking the color values from the opposite edge of the image.

Ext ended by two pixels using "wap"

nmnM nl n2 nmNm nl n2
Nm NM N1N2...NT1NM N1 N2
iM1m 11 12 ... 1m1M 11 12
2M2m 21 22 ... 2m2M 21 22
nmnM nln2...nmnM nln2
NmNM NI N2 ... NmNM NI N2
iImiM 11 12 ... 1m1M 11 12
2m2M 21 22 ... 2m2M 21 22

"none" indicates that the source image is extended with pixel values of zero for R, G, B and A.

kernelUnitLength = "<xLength> [<yLength>]"
Indicates the intended distance in current filter units (i.e., units as determined by the value of attribute filterUnits) between successive
columns and rows, respectively, in the kernelMatrix. By specifying value(s) for kernelUnitLength, the kernel becomes defined in a
scalable, abstract coordinate system. If kernelUnitLength is not specified, the default value is one pixel in the offscreen bitmap, whichisa
pixel-based coordinate system, and thus potentially not scalable. For some level of consistency across display media and user agents, it is
necessary that a value be provided for at least one of filterRes and kernelUnitLength. In some implementations, the most consistent results
and the fastest performance will be achieved if the pixel grid of the temporary offscreen images aligns with the pixel grid of the kernel.

Attributes defined elsewhere:
%stdAttrs;, %filter primitive attributes with in;.

15.13 Filter primitive 'feDiffuseLighting'

Thisfilter primitive lights an image using the alpha channel as a bump map. The resulting image is an RGBA opague image based on the light
color with alpha = 1.0 everywhere. The lighting calculation follows the standard diffuse component of the Phong lighting model. The resulting
image depends on the light color, light position and surface geometry of the input bump map.

The light map produced by thisfilter primitive can be combined with a texture image using the multiply term of the arithmetic 'feComposite'
_compositing method. Multiple light sources can be simulated by adding several of these light maps together before applying it to the texture

Dr = (kd * NNL * Lr) / resultScale
Dg = (kd * NNL * Lg) / resultScale
Db = (kd * NNL * Lb) / resultScale
Da = 1.0 / resultScale

where

kd = diffuse lighting constant

N = surface normal unit vector, afunction of x andy

L = unit vector pointing from surface to light, afunction of x and y in the point and spot light cases
Lr,Lg,Lb=RGB components of light, afunction of x and y in the spot light case

resultScale = overall scaling factor

N isafunction of x and y and depends on the surface gradient as follows:

The surface described by the input alphaimage Ain (x,y) is:

Z (x,y) = surfaceScale * Ain (x,Y)

Surface normal is calculated using the Sobel gradient 3x3 filter:

Nx (x,y)= - surfaceScale * 1/4*((|(x+1,y-1) + 2*I(x+1,y)
+ | (x+1,y+1))
(1(x-1,y-1) + 2*1(x-1,y)
+ 1(x-1,y+1)))
Ny (Xx,y)= - surfaceScale * 1/4*((I(x-1,y+1) + 2*1(x,y+1l) + I(x+1,y+1))

(1(x-1,y-1) + 2*I(x,y-1)
+ 1 (x+1,y-1)))
Nz (x,y) = 1.0

N= (Nx, Ny, Nz) / Nornm((Nx, Ny, Nz))
L, the unit vector from the image sample to the light is calculated as follows:

For Infinite light sourcesit is constant:

Lx = cos(azi nuth)*cos(el evation)
Ly = -sin(azi nuth)*cos(el evation)
Lz = sin(el evation)

For Point and spot lightsit is afunction of position:

Lx = Lightx - x
Ly = Lighty - vy
Lz = Lightz - Z(x,y)

L = (Lx, Ly, Lz) / Norm(Lx, Ly, Lz)
where Lightx, Lighty, and Lightz are the input light position.
Lr,Lg,Lb, thelight color vector isafunction of position in the spot light case only:

Lr = Lightr*pow (-L.S), specul ar Exponent)
Lg = Lightg*pow (-L.S), specul ar Exponent)
Lb = Li ghtb*pow((-L.S), specul ar Exponent)

where Sisthe unit vector pointing from the light to the point (pointsAtX, pointsAtY, pointsAtZ) in the x-y plane:

Sx = poi ntsAt X - Lightx
Sy = pointsAtY - Lighty
Sz = pointsAtZ - Lightz

S = (Sx, Sy, Sz) / Norm(Sx, Sy, Sz)

If L.Sispositiveno light is present. (Lr =Lg=Lb=0)

<! ELEMENT f eDi ffuseLi ghting ((feDistantLight]|fePointlLight]|feSpotLight), (animte|set|ani mteColor)*) >
<I ATTLI ST feDi ffuseLi ghting

Yst dAttrs;

%ilter primtive attributes_with_in;

resul t Scal e Yunber; #l MPLI ED

surfaceScal e YNunber; #l MPLI ED

di f f useConst ant YNunber; #l MPLI ED

Li ght Col or %8VGCol or; #l MPLI ED >

Attribute definitions:
resultScale = "<number>"

Multiplicative scale for the result. This allows the result of the 'feDiffuseLighting’ result to represent values greater than 1.
surfaceScale = "<number>"

height of surface when Ain = 1.
diffuseConstant = "<number>"

kd in Phong lighting model. Range 0.0 to 1.0.
lightColor = "<SVG color>"

RGB color value for the light source.
Attributes defined elsewhere:

%stdAttrs;, %filter primitive attributes with in;.

Thelight source is defined by one of the child elements 'feDistantLight’, ‘fePointLight' or 'feSpotLight'. These same child elements also apply to
filter primitive 'feSpecularLighting'.

15.13.1 Light source 'feDistantLight’

<! ELEMENT feDi stantLight (animate|set)* >

<I ATTLI ST feDi stant Li ght
Yst dAttrs;
azi muth Yunber; # MPLI ED
el evation YNunber; #l MPLIED >

Attribute definitions:
azimuth = "<number>"

Direction angle for the light source on the XY plane, in degrees.
elevation = "<number>"

Direction angle for the light source on the Y Z plane, in degrees.
Attributes defined elsewhere:

Y%stdAttrs;.

15.13.2 Light source 'fePointLight'’

<! ELEMENT f ePoi nt Li ght (animate|set)* >
<! ATTLI ST f ePoi nt Li ght

Yst dAttrs;

X YNunber; #l MPLI ED

y %\unber; #l MPLI ED

z YNunber; #l MPLIED >

Attribute definitions:
X ="<number>"

X location for the light source.
y = "<number>"

Y location for the light source.
z="<number>"

Z location for the light source.
Attributes defined elsewhere:

Y%ostdAttrs;.

15.13.3 Light source 'feSpotLight'’

<! ELEMENT feSpotLight (aninmate|set)* >
<I ATTLI ST feSpot Li ght

Yst dAttrs;

X YN\unber; #l MPLI ED

y YNunber; #l MPLIED

z YNunber; #l MPLI ED

poi nt sAt X YNunber ; #l MPLI ED

poi nt sAtY YNunber; #l MPLI ED

poi nt sAt Z YNunber ; #l MPLI ED

specul ar Exponent YNunber; #l MPLI ED >

Attribute definitions:
X = "<number>"

X location for the light source.
y = "<number>"

Y location for the light source.
z="<number>"

Z location for the light source.
pointsAtX = "<number>"

X location of the point at which the light source is pointing.
pointsAtY ="<number>"

Y location of the point at which the light source is pointing.
pointsAtZ = "<number>"

Z location of the point at which the light source is pointing.
specularExponent = "< number>"

Exponent value controlling the focus for the light source.
Attributes defined elsewhere:

Y%stdAttrs;.

15.14 Filter primitive 'feDisplacementMap'

Thisfilter primitive uses the pixels values from the image from in2 to spatially displace the image from in. Thisis the transformation to be
performed:

P (x,y) <- P(x + scale * ((XC(x,y) - .5), y + scale * (YC(x,y) - .5))

where P(x,y) is the source image, in, and P'(x,y) isthe destination. XC(x,y) and Y C(x,y) are the component values of the designated by the
xChannel Selector and yChannel Selector. For example, to use the R component of in2 to control displacement in x and the G component of
Image2 to control displacement iny, set xChannel Selector to "R" and yChannel Selector to "G".

The displacement map defines the inverse of the mapping performed.

Thisfilter can have arbitrary non-localized effect on the input which might require substantial buffering in the processing pipeline. However with
this formulation, any intermediate buffering needs can be determined by scale which represents the maximum displacement in either x or y.

<! ELEMENT f eDi spl acenent Map (ani mat e| set)* >
<! ATTLI ST feDi spl acenent Map

YstdAttrs;

%ilter primtive attributes with_ in;

scal e YNunber; #l MPLI ED

xChannel Sel ector (R| G| B| A "A"

Channel Sel ector (R| G| B| A "A"
in2 CDATA #REQUI RED >

Attribute definitions:
scale = "<number>"

Displacement scale factor.
xChannelSelector ="R| G| B | A"

Indicates which channel from in2 to use to displace the pixelsin in along the X axis.
yChannelSelector ="R| G| B| A"

Indicates which channel from in2 to use to displace the pixelsinin along the Y axis.
in2 = "(seein attribute)"

The second input image, which is used to displace the pixels in the image from attribute in. This attribute can take on the same values as
the in attribute.

Attributes defined elsewhere:
%stdAttrs;, %filter primitive attributes with in;.

15.15 Filter primitive ‘feFlood’

Thisfilter primitive creates an image with infinite extent filled with the color and opacity values from properties 'flood-color' and 'flood-opacity'.

<! ELEMENT feFl ood (ani nate|set|ani mateColor)* >
<! ATTLI ST feFl ood

Yst dAttrs;

%ilter primtive attributes_with_in;

style %styl eSheet; #l MPLI ED

%ExchangeSVG f eFl oodAttrs; >

Attributes defined elsewhere:
Y%ostdAttrs;, %filter primitive attributes with in;, style.

The 'flood-color' property indicates what color to use to flood the current filter primitive sub-region. The keyword currentColor and ICC colors
can be specified in the same manner as within a <paint> specification for the 'fill' and 'stroke’ properties.

‘flood-color'

Value: currentColor |
<color> [icc-color(<name>,<icccolorvalue>+)] |
inherit

Initial: black

Appliesto: 'feFlood' elements

Inherited: no

Percentages. N/A

Media: visual

Animatable: yes

The 'flood-opacity’ property defines the opacity value to use across the entire filter primitive sub-region.

'flood-opacity’
Value: <alphavalue> | inherit
Initial: 1
Appliesto: 'feFlood' elements
Inherited: no
Percentages: N/A
Media: visual

Animatable: yes

15.16 Filter primitive 'feGaussianBlur'

Thisfilter primitive performs a gaussian blur on the input image.

The Gaussian blur kernel is an approximation of the normalized convolution:
H(x) = exp(-x2/ (2s2)) / sqrt(2* pi*s2)

where's is the standard deviation specified by stdDeviation.

The value of stdDeviation can be either one or two numbers. If two numbers are provided, the first number represents a standard deviation value
along the X axis of the current coordinate system and the second value represents a standard deviation in Y. If one number is provided, then that
valueisused for both X and Y.

Even if only one valueis provided for stdDeviation, this can be implemented as a separable convolution.

For larger values of 's' (s >= 2.0), an approximation can be used: Three successive box-blurs build a piece-wise quadratic convolution kernel,
which approximates the gaussian kernel to within roughly 3%.

let d = floor(s * 3*sqrt(2*pi)/4 + 0.5)
... if disodd, use three box-blurs of size 'd', centered on the output pixel.

... if diseven, two box-blurs of size'd' (the first one centered one pixel to the | eft, the second one centered one pixel to the right of the output pixel
one box blur of size'd+1' centered on the output pixel.

Frequently this operation will take place on alpha-only images, such as that produced by the built-in input, SourceAlpha. The implementation may
notice this and optimize the single channel case. If the input hasinfinite extent and is constant, this operation has no effect. If the input has infinite
extent and is atile, thefilter is evaluated with periodic boundary conditions.

<! ELEMENT feGaussi anBl ur (animate|set)* >
<I ATTLI ST feGaussi anBl ur
Yst dAttrs;
%ilter primtive attributes with_ in;
stdDevi ati on CDATA #| MPLI ED >

Attribute definitions:
stdDeviation = "<number> [<number>]"

The standard deviation for the blur operation. If two <number>s are provided, the first number represents a standard deviation value along

the X axis of the current coordinate system and the second value represents a standard deviation in Y. If one number is provided, then that
valueisused for both X and Y.

Attributes defined elsewhere:
%stdAttrs;, %filter primitive attributes with in;.

15.17 Filter primitive ‘felmage’

Thisfilter primitive refers to a graphic external to thisfilter element, which isloaded or rendered into an RGBA raster and becomes the result of
thefilter primitive.

Thisfilter primitive can refer to an external image or can be a reference to another piece of SVG. This node produces an image similar to the
builtin image source SourceGraphic except that the graphic comes from an external source.

If the xlink:href references a stand-alone image resource such as a JPEG or PNG file, then the image resource is rendered according to the
behavior of the 'image’ element; otherwise, the referenced resource is rendered according to the behavior of the 'use’ element. In either case, the
current user coordinate system depends on the value of attribute filterUnits on the 'filter' element.

<! ELEMENT felnage (ani nate|set|ani mateTransform* >
<I ATTLI ST fel mage

Yst dAttrs;

% angSpaceAttrs;

class %0 asslList; #l MPLI ED

transform %ransforniist; # MPLIED

ext er nal Resour cesRequi red %Bool ean; #l MPLI ED

Ul inkRef Attrs:;

xlink: href %JRI; #REQU RED

%st yl abl eSVG Styl eAttribute;

%ExchangeSVG Cont ai ner Attrs;

%ExchangeSVG Fil | StrokeAttrs;

%ExchangeSVG G adi ent Attrs;

%ExchangeSVG Graphi csAttrs;

%ExchangeSVG Mar ker Attrs;

%ExchangeSVG Text Cont ai nerAttrs;

%ExchangeSVG Text El ement Attrs;

%ExchangeSVG Vi ewport Attrs;

%ilter _primtive_ attributes; >

Attributes defined elsewhere:
Y%stdAttrs;, YolangSpaceAttrs;, class, transform, external ResourcesRequired, %oxlinkRefAttrs;, xlink:href, %filter primitive attributes;.

15.18 Filter primitive ‘feMerge'

Thisfilter primitive composites input image layers on top of each other using the over operator with Inputl on the bottom and the last specified
input, InputN, on top.

Many effects produce a number of intermediate layersin order to create the final output image. Thisfilter allows us to collapse those into asingle
image. Although this could be done by using n-1 Composite-filters, it is more convenient to have this common operation available in this form,
and offers the implementation some additional flexibility.

‘feMerge’ composites input image layers on top of each other using the over operator with Inputl on the bottom and the last specified input,
InputN, on top.

Each 'feMerge' element can have any number of ‘feMergeNode' subelements, each of which has an in attribute.

The canonical implementation of feMerge is to render the entire effect into one RGBA layer, and then render the resulting layer on the output
device. In certain cases (in particular if the output device itself is a continuous tone device), and since merging is associative, it might be a
sufficient approximation to evaluate the effect one layer at atime and render each layer individually onto the output device bottom to top.

<! ELEMENT feMerge (feMergeNode)* >
<! ATTLI ST feMerge

YstdAttrs;

%ilter primtive attributes; >

<! ELEMENT f eMergeNode (animate|set)* >
<! ATTLI ST feMer geNode

Yst dAttrs;

in CDATA #l MPLI ED >

Attributes defined elsewhere:
%stdAttrs;, %filter primitive attributes;, in.

15.19 Filter primitive 'feMorphology'

Thisfilter primitive performs "fattening” or "thinning" of artwork. It is particularly useful for fattening or thinning an a pha channel,

The dilation (or erosion) kernel is arectangle with awidth of 2*x-radius+1 and a height of y-radius+1.

Frequently this operation will take place on a pha-only images, such as that produced by the built-in input, SourceAlpha. In that case, the
implementation might want to optimize the single channel case.

If theinput hasinfinite extent and is constant, this operation has no effect. If the input has infinite extent and is atile, the filter is evaluated with
periodic boundary conditions.

<! ELEMENT f eMor phol ogy (animate|set)* >
<! ATTLI ST feMbr phol ogy
Yst dAttrs;
%ilter primtive attributes_with_in;
operator (erode | dilate) "erode"
radi us %ength; # MPLIED >

Attribute definitions:
operator = "erode | dilate"

A keyword indicating whether to erode (i.e., thin) or dilate (fatten) the source graphic.
radius = "<number> [<number>]"

The radius (or radii) for the operation. If two <number>s are provided, the first number represents a x-radius in the current coordinate
system and the second value represents ay-radius. If one number is provided, then that value is used for both X and Y.

Attributes defined elsewhere:
Y%stdAttrs;, %filter primitive attributes with in;.

Example feMorphology shows examples of the four types of feMorphology operations.

<?xm version="1.0"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'
"http://ww. w3. or g/ TR/ 2000/ 03/ WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dt d" >
<svg w dt h="5cnf height="7cni viewBox="0 0 700 500">
<title>Exanpl e feMrphol ogy - Exanples of erode and dilate</title>
<desc>Fi ve text strings drawn as outlines.
The first is unfiltered. The second and third use 'erode'.
The fourth and fifth use 'dilate'.</desc>
<def s>
<filter id="Erode3">
<f eMor phol ogy oper at or="erode" in="SourceG aphic" radius="3" />
</filter>
<filter id="FErode6">
<f eMor phol ogy oper at or="erode" in="SourceG aphic" radius="6" />
</filter>
<filter id="Dilate3">
<f eMor phol ogy operator="dilate" in="SourceG aphic" radius="3" />
</filter>
<filter id="Dilate6">
<f eMor phol ogy operator="dilate" in="SourceG aphic" radius="6" />
</filter>
</ def s>
<rect style="fill:none; stroke:blue; stroke-w dth:2"
x="1" y="1" wi dt h="698" hei ght ="498"/>
<g styl e="enabl e- background: new'>
<g style="font-fanily: Verdana; font-size:75;
fill:none; stroke:black; stroke-w dth:6">
<text x="50" y="90">Unfiltered</text>
<text x="50" y="180" style="filter:url (#Erode3)">Erode radius 3</text>
<text x="50" y="270" style="filter:url (#Erode6)">Erode radius 6</text>
<text x="50" y="360" style="filter:url (#Dilate3)">Dilate radius 3</text>
<text x="50" y="450" style="filter:url (#Dilate6)">Dilate radius 6</text>
</ g>
</ g>
</ svg>

Unfiltered
Ercde radius 3
Erode radlus 6

Dilate radius 3
Dilabe radius 6

Example feMorphology

View this example as SV G (SV G-enabled browsers only)

file:///d|/public/svgspec/images/filters/feMorphology.svg

15.20 Filter primitive 'feOffset'’

Thisfilter primitive offsets the source image relative to its current position in the image space by the specified vector.

Thisisimportant for effects like drop shadows.

<! ELEMENT feOf fset (aninmate|set)* >
<I ATTLI ST feC f set
YstdAttrs:;
%ilter primtive attributes with_ in;
dx %.ength; #l MPLI ED
dy %.ength; #l MPLIED >

Attribute definitions:

dx = "<length>"
The amount to offset the input graphic along the x axis.
dy = "<|m[_:th>"

The amount to offset the input graphic along they axis.
Attributes defined elsewhere:
%stdAttrs;, %filter primitive attributes with in;.

An example of 'feOffset’ can be found in Example filtersO1.

15.21 Filter primitive 'feSpecularLighting’

Thisfilter primitive lights a source graphic using the alpha channel as a bump map. The resulting image is an RGBA image based on the light
color. The lighting caculation follows the standard specular component of the Phong lighting model. The resulting image depends on the light
color, light position and surface geometry of the input bump map. The result of the lighting calculation is added. The filter primitive assumes that
the viewer is at infinity the z direction (i.e the unit vector in the eye direction is (0,0,1) everywhere.

Thisfilter primitive produces an image which contains the specular reflection part of the lighting calculation. Such amap isintended to be
combined with atexture using the add term of the arithmetic 'feComposite' method. Multiple light sources can be simulated by adding several of
these light maps before applying it to the texture image.

Sr ks * pow(N. H, specul ar Exponent) * Lr

Sg = ks * pow(N. H, specul ar Exponent) * Lg
Sb = ks * pow(N. H, specul arExponent) * Lb
Sa = max(Sr, Sg, Sb)

where

ks = specular lighting constant

N = surface normal unit vector, afunction of x and y

H ="halfway" unit vectorbetween eye unit vector and light unit vector
Lr,Lg,Lb=RGB components of light

See 'feDiffuseLighting for definition of N and (Lr, Lg, Lb).

The definition of H reflects our assumption of the constant eye vector E = (0,0,1):
H= (L + E) / Norn(L+E)

where L isthe light unit vector.

Unlike the 'feDiffuselL ighting’, the ‘feSpecularLighting' filter produces a non-opague image. Thisis due to the fact that specular result

(Sr,Sg,Sh,Sa) is meant to be added to the textured image. The alpha channel of the result is the max of the color components, so that where the
specular light is zero, no additional coverage is added to the image and a fully white highlight will add opacity.

The 'feDiffuseLighting’ and ‘feSpecularLighting' filters will often be applied together. An implementation may detect this and cal culate both maps
in one pass, instead of two.

<! ELEMENT feSpecul arLighting ((feDi stantLight]|fePointLight]|feSpotLight), (aninmate|set]|ani nateColor)*) >
<! ATTLI ST feSpecul arLi ghting

Yst dAttrs;

%ilter primtive attributes with_ in;

surfaceScal e YWNunber; #l MPLI ED

specul ar Const ant YNunber ; #l MPLI ED

specul ar Exponent YNunber ; #l MPLI ED

i ght Col or %8VGCol or; # MPLI ED >

Attribute definitions:
surfaceScale = "< number>"

height of surface when Ain=1.
specularConstant = "<number>"

ks in Phong lighting model. Range 0.0 to 1.0.
specularExponent = "<number>"

Exponent for specular term, larger is more "shiny". Range 1.0 to 128.0.
lightColor ="<SVG color>"

RGB color value for the light source.
Attributes defined elsewhere:

%stdAttrs;, %filter primitive attributes with in;.

The light source is defined by one of the child elements 'feDistantLight', ‘fePointLight' or 'feDistantLight'. The se same child elements also apply
to filter primitive feDiffusel ighting' and are described in the definition of that filter primitive.

15.22 Filter primitive 'feTile'

Thisfilter primitive creates an image with infinite extent by replicating the source image in image space.

Typically, the source image has been defined with afilter primitive sub-region in order to define the tiling rectangle.

<! ELEMENT feTile (aninate|set)* >
<I ATTLI ST feTile
Yst dAttrs;
%ilter primtive attributes with_in; >

Attributes defined elsewhere:
%stdAttrs;, %filter primitive attributes with in;.

15.23 Filter primitive 'feTurbulence'

Thisfilter primitive creates an image using the Perlin turbulence function. It allows the synthesis of artificia textureslike clouds or marble. For a
detailed description the of the Perlin turbulence function, see "Texturing and Modeling”, Ebert et al, AP Professional, 1994. The resulting image
will have maximal size in image space.

It is possible to create bandwidth-limited noise by synthesizing only one octave.

The following C code shows the exact algorithm used for thisfilter effect.

For fractal Sum, you get a turbFunctionResult that is aimed at arange of -1 to 1 (the actual result might exceed this range in some cases). To
convert to acolor value, usetheformulacol or Val ue = ((turbFunctionResult * 255) + 255) / 2,thenclamp totherangeO to
255,

For turbulence, you get a turbFunctionResult that is aimed at arange of 0to 1 (the actual result might exceed this range in some cases). To convert
to acolor value, usetheformulacol or Val ue = (turbFunctionResult * 255),thenclamp to the range O to 255.

Thefollowing order is used for applying the pseudo random numbers. Aninitial seed value is computed based on attribute seed. Then the
implementation computes the lattice points for R, then continue getting additional pseudo random numbers relative to the last generated pseudo
random number and compute the lattice points for G, and so on for B and A.

#defi ne BSi ze 0x100

#defi ne BM Oxf f

#define PerlinN 0x1000

#define NP 12 /* 2"PerlinN */
#define NM Oxfff

static ulLatticeSel ector[BSi ze + BSize + 2];
static float fGadient[BSize + BSize + 2][2];

static void init(void)

float s;
int i, j, k;

for(i = 0; i < BSize; i++)
uLatticeSelector[i] =i;

for (j =0; jJ <2; j++)
fGadient[i][j] = (float)
((rand() % (BSize + BSize))
- BSize) / BSize;

s = float(sqrt(fGadient[i][0] *
fGadient[i][0] + fGadient[i][1] *
fGadient[i] [1]));

fGadient[0] = v[0] / s;

fGadient[1] = v[1] / s;

}
while(--i)

k = uLatticeSelector[i];

uLatticeSelector[i] = uLatticeSelector[j =

rand() % BSi ze];
uLatticeSelector[j] = k;

for(i =0; i < BSize + 2; i++)

{
uLatticeSel ector[BSize + i] = ulLatticeSelector[i];
for(j =0; j <2; j++)
fGadient[BSize + i][j] = fGadient[i][j];
}

#define s_curve(t) (t *t * (3. - 2. *t))
#define lerp(t, a, b) (a+t * (b - a))

float noise2(float vec[2])

{

}

int bx0, bxl1l, byO, byl, b00, bl0, b01, bli;
float rx0, rx1, ry0, ryl, *q, sx, sy, a, b, t, u, v;
register i, j;

t = vec[0] + PerlinN,
bx0 = ((int)t) & BM
bx1l = (bx0+1) & BM
rx0 =t - (int)t;
rxl = rx0 - 1.0f;

t = vec[1l] + PerlinN,
by0 = ((int)t) & BM
byl = (by0O+1) & BM
ry0 =t - (int)t;
ryl = ry0 - 1.0f;

= uLatticeSel ector[bx0];
j = uLatticeSel ector[bx1];

b00 = uLatticeSel ector[i + byO0];

b10 = ulLatticeSelector[j + byO];

b01 = uLatticeSelector[i + byl];

bll = uLatticeSel ector[j + byl];

sx = float(s_curve(rx0));

sy = float(s_curve(ry0));

q = fGadient[b00]; u =rx0 * gq[0] + ry0 * q[1];
q =fGadient[bl0]; v = rx1 * q[0] + ry0 * q[1];
a = lerp(sx, u, v);

q =fGadient[b01l]; u =rx0 * q[0] + ryl * q[1];
q = fGadient[bl1l]; v = rx1 * q[0] + ryl * q[1];
b = lerp(sx, u, v);

return lerp(sy, a, b);

/1 Returns 'turbFunctionResult'

float turbul ence(float *point, float fBaseFreq, int nNunCctaves,
bFr act al Sum)
{

float fSum = 0.0f;
float vec[2];
float fFrequency = fBaseFreq;

for(int nCctave = 0; nCctave < nNunctaves; nCctave++)
{
vec[0] = fFrequency * point[0];
vec[1l] = fFrequency * point[1];
i f(bFractal Sum
fSum += fl oat (noi se2(vec) / (fFrequency / fBaseFreq));
el se

bool

f Sum += fl oat (fabs(noi se2(vec)) / (fFrequency / fBaseFreq));
f Frequency *= 2;

return fSum

Thefollowing C code shows the exact algorithm for the pseudo random number generator.

/* Produces results in the range [1, 2**31 - 2].
Algorithmis: r = (a*r) md m
where a = 16807 and m= 2**31 - 1 = 2147483647
See [Park & MIler], CACMvol. 31 no. 10 p. 1195, Cct. 1988
To test: the algorithmshould produce the result 1043618065
as the 10,000t h generated nunber if the original seed is 1.

*/

#define RAND_m 2147483647 [* 2**31 - 1 */

#defi ne RAND_a 16807 /* 7**5; primtive root of m*/
#define RAND_q 127773 /* m/ a*/

#define RAND_r 2836 /* m%a */

| ong

setup_seed(l ong seed)

if (seed <= 0) seed = -(seed % (RAND. m- 1)) + 1;
if (seed > RAND m- 1) seed = RAND m- 1;
return seed;

}

| ong
randon(| ong seed)

long result;

result = RAND a * (seed % RAND gq) - RAND r * (seed / RAND Q);
if (result <= 0) result += RAND m

return result;

}

<! ELEMENT feTurbul ence (aninate|set)* >
<! ATTLI ST f eTur bul ence
Yst dAttrs;
%ilter primtive_ attributes;
baseFr equency CDATA #l MPLI ED
nunCct aves % nteger; #l MPLI ED
seed Y%Nunber: #l MPLI ED
stitchTiles (stitch | noStitch) "noStitch"
type (fractal Noise | turbul ence) "turbul ence" >

Attribute definitions:
baseFrequency = "<number> [<number>]"

The base frequency (frequencies) parameter(s) for the noise function. If two <number>s are provided, the first number represents a base
frequency in the X direction and the second value represents a base frequency in the Y direction. If one number is provided, then that value
isused for both X and Y.

numOctaves = "<integer>"

The numOctaves parameter for the noise function.
seed = "<number>"

The starting number for the pseudo random number generator. If not provided, seed defaults to zero.
stitchTiles = "stitch | noStitch"

If stitchTiles="noStitch", no attempt it made to achieve smooth transitions at the border of tiles which contain a turbulence function.
Sometimes the result will show clear discontinuities at the tile borders.

If stitchTiles="stitch", then the user agent will automatically adjust baseFrequency-x and baseFrequency-y values such that the
feTurbulence node's width/height (i.e., the width/height of the current subregion) contains an integral number of the Perlin tile
width/height for the first octave. The baseFrequency will be adjusted up or down depending on which way has the smallest relative (not
absolute) change as follows: Given the frequency, calculate lowFreg=floor(width* frequency)/width and

hiFreg=ceil (width* frequency)/width. If frequency/lowFreq < hiFreg/frequency then use lowFreq, else use hiFreq. While generating
turbulence values, generate | attice vectors as normal for Perlin Noise, except for those lattice points that lie on the right or bottom edges of
the active area (the size of the resulting tile). In those cases, copy the lattice vector from the opposite edge of the active area.

type = "fractalNoise | turbulence"

Indicates whether the filter primitive should perform a noise or turbulence function.
Attributes defined elsewhere:

Y%stdAttrs;, Yfilter primitive attributes;.

15.24 DOM interfaces

The following interfaces are defined below: SV GFilterElement, SV GFilterNodeStandardAttributes, SV GFEBlendElement,

SV GFEColorMatrixElement, SV GFEComponentTransferElement, SV GComponentT ransfer FunctionElement, SV GFEFuncRElement,

SV GFEFuncGElement, SV GFEFuncBElement, SV GFEFuncAElement, SVGFECompositeElement, SV GFEConvolveM atrixElement,

SV GFEDiffuseL ightingElement, SV GFEDistantLightElement, SV GFEPointLightElement, SV GFESpotL ightElement,

SV GFEDi splacementM apElement, SV GFEFIoodElement, SV GFEGaussianBlurElement, SV GFEImageElement, SV GFEM ergeElement,
SV GFEMergeNodeElement, SVGFEM orphologyElement, SV GFEOffsetElement, SV GFESpecularLightingElement, SV GFETileElement,
SV GFETurbulenceElement.

Interface SVGFilterElement
The SV GFilterElement interface corresponds to the filter' element.

IDL Definition

interface SVGFilterEl enent : SVGEl enment, SVGLangSpace, SVGURI Reference, SVGUnitTypes {
attribute unsigned short filterUnits;

attribute SVGLength X;
attribute SVGLength y;
attribute SVGLength wi dt h;
attribute SVG.ength hei ght ;
readonly attribute SVA nteger filterResX;
readonly attribute SVA nteger filterResY;

void setFilterRes (in unsigned long filterResX, in unsigned long filterResY)
rai ses(SVGException);

Attributes
unsigned short filterUnits
Corresponds to attribute filterUnits on the given 'filter' element. Takes on one of the constants defined in SVGUnitTypes.
SVGLength x
Corresponds to attribute x on the given filter' element.
SVGLengthy
Corresponds to attribute y on the given filter' element.
SVGLength width
Corresponds to attribute width on the given 'filter' element.
SVGLength height
Corresponds to attribute height on the given filter' element.
readonly SV GInteger filterResX
Corresponds to attribute filterRes on the given 'filter' element. Contains the X component of attribute filterRes.
readonly SV GInteger filterResY

Corresponds to attribute filterRes on the given 'filter' element. Containsthe Y component (possibly computed automatically) of
attribute filterRes.

Methods
setFilterRes
Setsthe values for attribute filterRes.
Parameters

in unsigned long filterResX The X component of attribute filterRes.
in unsigned long filterResY TheY component of attribute filterRes.

No Return Vaue
Exceptions
SVGException SVG_WRONG_TYPE_ERR: Raised if a parameter is of the wrong type.

Interface SVGFilterNodeStandardAttributes
This interface defines the set of DOM attributes that are common across the filter interfaces.

IDL Definition

interface SVGFi|lterNodeStandardAttributes {
attribute unsigned short filterUnits;

attribute SVGA.ength X;
attribute SVGLength y;
attribute SVG.ength wi dt h;
attribute SVGA.ength hei ght ;
attribute DOVBtring result;

Attributes

unsigned short filterUnits

Corresponds to attribute filterUnits on the given filter' element. Takes on one of the constants defined in SV GUnitTypes.
SVGLength x

Corresponds to attribute x on the given element.
SVGLengthy

Corresponds to attribute y on the given element.
SVGLength width

Corresponds to attribute width on the given element.
SVGLength height

Corresponds to attribute height on the given element.
DOMString result

Corresponds to attribute result on the given element.

Interface SVGFEBlendElement

The SV GFEBIendElement interface corresponds to the 'feBlend' element.

IDL Definition

interface SVGFEBI endEl ement : SVCEl enent, SVGFilterNodeStandardAttributes {
/1 Bl end Mode Types
constant unsigned short SVG FEBLEND_MODE_UNKNOWN
constant unsigned short SVG FEBLEND_MODE_NORMAL
constant unsigned short SVG FEBLEND_MODE_MULTI PLY
constant unsigned short SVG FEBLEND_ MODE_SCREEN
constant unsigned short SVG FEBLEND_ MODE_DARKEN
constant unsigned short SVG FEBLEND_MODE_LI| GHTEN

aghrwvRQ

attribute DOVString in;
attribute DOVString in2;
attribute unsigned short node;

Definition group Blend Mode Types
Defined constants
SVG_FEBLEND_MODE_UNKNOWN Thetypeisnot one of predefined types. It isinvalid to attempt to define a new value of
this type or to attempt to switch an existing value to this type.
SVG_FEBLEND_MODE_NORMAL Correspondsto value normal.
SVG_FEBLEND_MODE_MULTIPLY Corresponds to value multiply.
SVG_FEBLEND_MODE_SCREEN Corresponds to value screen.
SVG_FEBLEND_MODE_DARKEN Corresponds to value darken.
SVG_FEBLEND_MODE_LIGHTEN Correspondsto value lighten.

Attributes
DOMString in
Corresponds to attribute in on the given 'feBlend' element.
DOMString in2
Corresponds to attribute in2 on the given 'feBlend' element.

unsigned short mode

Corresponds to attribute mode on the given 'feBlend' element. Takes on one of the Blend Mode Types.

Interface SVGFEColorMatrixElement

The SVGFEColorMatrixElement interface corresponds to the ‘feColorMatrix' el ement.

IDL Definition

interface SVGFECol or Matri xEl ement : SVGEl ement, SVGFi|terNodeStandardAttributes {
/1 Color Mtrix Types

constant unsigned short SVG FECOLORVATRI X_TYPE_UNKNOMN = 0;
constant unsigned short SVG FECOLORVATRI X_TYPE_MATRI X =1
constant unsigned short SVG FECOLORVATRI X_TYPE_SATURATE =2
constant unsigned short SVG FECOLORVATRI X_TYPE_HUEROTATE =3
constant unsigned short SVG FECOLORVATRI X_TYPE_LUM NANCETQALPHA = 4;
attribute DOVString in;
attribute unsigned short type;
readonly attribute SVGLi st val ues;
I
Definition group Color Matrix Types
Defined constants
SVG_FECOLORMATRIX_TYPE_UNKNOWN The type is not one of predefined types. It isinvalid to attempt to
define anew value of thistype or to attempt to switch an existing
valueto thistype.
SVG_FECOLORMATRIX_TYPE_MATRIX Corresponds to value matrix.
SVG_FECOLORMATRIX_TYPE_SATURATE Corresponds to value saturate.
SVG_FECOLORMATRIX_TYPE_HUEROTATE Corresponds to value hueRotate.
SVG_FECOLORMATRIX_TYPE_LUMINANCETOALPHA Corresponds to value luminanceToAlpha
Attributes
DOMString in
Corresponds to attribute in on the given 'feColorMatrix' element.
unsigned short type

Corresponds to attribute type on the given 'feColorMatrix' element. Takes on one of the Color Matrix Types.
readonly SVGList values
Corresponds to attribute values on the given 'feColorMatrix' element.

Provides access to the contents of the values attribute.

The various methods from SV GList, which are defined to accept parameters and return values of type Object, must receive
parameters of type SV GNumber and return values of type SV GNumber.

Interface SVGFEComponentTransferElement

The SV GFEComponentTransferElement interface corresponds to the 'feComponentTransfer' element.

IDL Definition

interface SVGFEConponent TransferEl ement : SVGEl enent, SVGFilterNodeStandardAttributes {
attribute DOVBtring in;

I

Attributes
DOMSItring in

Corresponds to attribute in on the given 'feBlend' element.

Interface SVGComponentTransferFunctionElement

Thisinterface defines a base interface used by the component transfer function interfaces.

IDL Definition

i nterface SVGConponent Tr ansf er Functi onEl enent : SVGEl ement, SVGFilter NodeStandardAttributes {
/| Conponent Transfer Types

const ant
const ant
const ant
const ant
const ant

readonl y

unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

attribute
attribute
attribute
attribute
attribute
attribute
attribute

short SVG |
short SVG |
short SVG_
short SVG |
short SVG |

unsi gned
SVGLi st

SVGN\unber
SVG\unber
SVGN\unber
SVGN\unber
SVG\unber

FECOVPONENTTRANFER_TYPE_UNKNOAN
FECOVPONENTTRANFER_TYPE_| DENTI TY
FECOVPONENTTRANFER_TYPE_TABLE
FECOVPONENTTRANFER_TYPE_LI NEAR
FECOVPONENTTRANFER_TYPE_GAMVA

TR TIRTINT
hronNRO

short type;
t abl eval ues;
sl ope;
intercept;
anpl i t ude;
exponent ;
of f set;

Definition group Component Transfer Types
Defined constants

SVG_FECOMPONENTTRANFER_TYPE_UNKNOWN Thetypeis not one of predefined types. It isinvalid to attempt to

define anew value of thistype or to attempt to switch an existing value
to thistype.

SVG_FECOMPONENTTRANFER_TYPE_IDENTITY Corresponds to value identity.
SVG_FECOMPONENTTRANFER_TYPE_TABLE Corresponds to value table.
SVG_FECOMPONENTTRANFER_TYPE_LINEAR Correspondsto value linear.
SVG_FECOMPONENTTRANFER_TYPE_GAMMA Corresponds to value gamma.

Attributes

unsigned short type
Corresponds to attribute type on the given element. Takes on one of the Component Transfer Types.
readonly SVGList tableVaues
Corresponds to attribute tableV alues on the given element.

Provides access to the contents of the tableValues attribute.

The various methods from SV GList, which are defined to accept parameters and return values of type Object, must receive
parameters of type SV GNumber and return values of type SV GNumber.

SV GNumber slope
Corresponds to attribute slope on the given element.
SV GNumber intercept
Corresponds to attribute intercept on the given element.
SVGNumber amplitude
Corresponds to attribute amplitude on the given element.
SV GNumber exponent
Corresponds to attribute exponent on the given element.
SV GNumber offset
Corresponds to attribute offset on the given element.

Interface SVGFEFuncRElement

The SV GFEFuncRElement interface corresponds to the 'feFuncR' element.

IDL Definition

interface SVGFEFuncREl ement :

SVGConponent Tr ansf er Funct i onEl enent ;

Interface SVGFEFuncGElement
The SV GFEFuncGElement interface corresponds to the 'feFuncG' element.

IDL Definition

interface SVGFEFuncGEl ement : SVGConponent Tr ansf er Functi onEl enent ;

Interface SVGFEFuncBElement

The SV GFEFuncBElement interface corresponds to the 'feFuncB' element.

IDL Definition

interface SVGFEFuncBEl ement : SVGConponent Tr ansf er Functi onEl erment ;

Interface SVGFEFuncAElement

The SVGFEFuncAElement interface corresponds to the 'feFuncA' element.

IDL Definition

interface SVGFEFuncAEl ement : SVGConponent Tr ansf er Functi onEl enment ;

Interface SVGFECompositeElement

The SV GFECompositeElement interface corresponds to the 'feComposite’ element.

IDL Definition

interface SVGFEConpositeEl enent : SVGEl enent, SVGFilterNodeStandardAttributes {
/'l Conposite Operators
constant unsigned short SVG FECOVPOSI TE_OPERATOR_UNKNOWN
constant unsigned short SVG FECOMPOSI TE_OPERATOR OVER
constant unsigned short SVG FECOMPCSI TE_OPERATOR | N
constant unsigned short SVG FECOWPCSI TE_OPERATOR_OUT
constant unsigned short SVG FECOMPOSI TE_OPERATOR ATOP
constant unsigned short SVG FECOMPCSI TE_OPERATOR_XOR

constant unsigned short SVG FECOWPCSI TE_OPERATOR_ARI THVETI C

(I TR TR TR T TIT]
saronEQ

attribute DOVString in;
attribute DOVSBtring in2;
attribute unsigned short operator;
attribute SVGA nteger k1;
attribute SVA nteger k2;
attribute SVA nteger k3;
attribute SVGA nteger k4;

Definition group Composite Operators
Defined constants

SVG_FECOMPOSITE_OPERATOR_UNKNOWN Thetypeisnot one of predefined types. It isinvalid to attempt to define a
new value of thistype or to attempt to switch an existing value to this type.

SVG_FECOMPOSITE_OPERATOR_OVER Correspondsto value over.
SVG_FECOMPOSITE_OPERATOR_IN Correspondsto valuein.
SVG_FECOMPOSITE_OPERATOR_OUT Corresponds to value out.
SVG_FECOMPOSITE_OPERATOR_ATOP Corresponds to value atop.
SVG_FECOMPOSITE_OPERATOR_XOR Corresponds to value xor.

SVG_FECOMPOSITE_OPERATOR_ARITHMETIC Corresponds to value arithmetic.

Attributes
DOMStringin

Corresponds to attribute in on the given ‘feComposite’ element.
DOMString in2

Corresponds to attribute in2 on the given 'feComposite’ element.
unsigned short operator

Corresponds to attribute operator on the given 'feComposite' element. Takes on one of the Composite Operators.
SVGInteger k1

Corresponds to attribute k1 on the given ‘feComposite' element. Must be zero or one.
SVGInteger k2

Corresponds to attribute k2 on the given ‘feComposite' element. Must be zero or one.
SVGInteger k3

Corresponds to attribute k3 on the given ‘feComposite' element. Must be zero or one.
SVGlinteger k4

Corresponds to attribute k4 on the given 'feComposite’ element. Must be zero or one.

Interface SVGFEConvolveMatrixElement

The SVGFEConvolveMatrixElement interface corresponds to the 'feConvolveMatrix' element.

IDL Definition

interface SVGFEConvol veMatri xEl ement : SVGEl ement, SVGFilterNodeStandardAttributes {
/1 Edge Mode Val ues

constant unsigned short SVG EDGEMODE_UNKNOWN = O;
constant unsigned short SVG EDGEMODE_DUPLI CATE = 1;
constant unsigned short SVG EDGEMCDE_WRAP = 2;
constant unsigned short SVG EDGEMODE_NONE = 3;
attribute SVA nteger order X;
attribute SVA nteger orderY;
readonly attribute SVG.i st kernel Matri x;
attribute unsigned short edgeMde;
attribute SVG\Number di vi sor;
attribute SVGA nteger targetX;
attribute SVA nteger target;
attribute SVG\Number ker nel Uni t Lengt hX;
attri bute SVG@\Wunber ker nel Uni t Lengt hY;

Definition group Edge M ode Values
Defined constants

SVG_EDGEMODE_UNKNOWN Thetypeis not one of predefined types. It isinvalid to attempt to define a new value of this
type or to attempt to switch an existing value to this type.

SVG_EDGEMODE_DUPLICATE Correspondsto value duplicate.
SVG_EDGEMODE_WRAP Corresponds to value wrap.
SVG_EDGEMODE_NONE Corresponds to value none.
Attributes
SVGInteger orderX
Corresponds to attribute order on the given ‘feConvolveMatrix' element.
SVGlnteger orderY
Corresponds to attribute order on the given 'feConvolveMatrix' element.
readonly SVGList kernelMatrix
Corresponds to attribute kernelMatrix on the given element.
Provides access to the contents of the kernelMatrix attribute.
The various methods from SV GList, which are defined to accept parameters and return values of type Object, must receive
parameters of type SV GNumber and return values of type SV GNumber.
unsigned short edgeMode
Corresponds to attribute edgeM ode on the given feConvolveMatrix' element. Takes on one of the Edge Mode Types.
SV GNumber divisor
Corresponds to attribute divisor on the given 'feConvolveMatrix' element.
SVGlinteger targetX

Corresponds to attribute targetX on the given 'feConvolveMatrix' element.
SVGlnteger targetY

Corresponds to attribute targetY on the given ‘feConvolveMatrix' element.
SVGNumber kernelUnitLengthX

Corresponds to attribute kernel UnitL ength on the given 'feConvolveMatrix' element.
SVGNumber kernelUnitLengthY

Corresponds to attribute kernel UnitL ength on the given 'feConvolveMatrix' el ement.

Interface SVGFEDiIffuseLightingElement

The SV GFEDiffuseLightingElement interface corresponds to the 'feDiffuselighting' element.

IDL Definition

interface SVGFEDI f f useLi ghti ngEl ement : SVGEl enent, SVGFilterNodeStandardAttributes {
attribute DOVBtring in;
attribute SV@Wunber resultScal e;
attribute SVG\unber surfaceScal e;
attribute SVG\unber diffuseConstant;
attribute SVGCol or 1ightCol or;

Attributes

DOMString in

Corresponds to attribute in on the given 'feDiffuseLighting' element.
SVGNumber resultScale

Corresponds to attribute resultScale on the given 'feDiffuseLighting' element.
SV GNumber surfaceScale

Corresponds to attribute surfaceScale on the given 'feDiffuseLighting' element.
SV GNumber diffuseConstant

Corresponds to attribute diffuseConstant on the given ‘feDiffuseLighting' element.
SVGCalor lightColor

Corresponds to attribute lightColor on the given ‘feDiffuseLighting' element.

Interface SVGFEDistantLightElement
The SVGFEDistantLightElement interface corresponds to the 'feDistantLight' element.

IDL Definition

interface SVGFED stantLi ght El ement : SVGEl enent {
attribute SVG\unmber azinuth;
attri bute SVG@G\Wunber el evati on;

Attributes
SVGNumber azimuth
Corresponds to attribute azimuth on the given ‘feDistantLight' element.
SVGNumber elevation
Corresponds to attribute elevation on the given 'feDistantLight' element.

Interface SVGFEPointLightElement

The SV GFEPointLightElement interface corresponds to the 'fePointLight' element.

IDL Definition

i nterface SVGFEPoi nt Li ght El ement : SVCEl enent {

attribute SVG\Wunber x;
attribute SVGNunber y;
attribute SVG\unber z;

Attributes
SVGNumber x
Corresponds to attribute x on the given ‘fePointLight' element.
SVGNumber y
Corresponds to attribute y on the given ‘fePointLight' element.
SVGNumber z
Corresponds to attribute z on the given 'fePointLight' element.

Interface SVGFESpotLightElement

The SV GFESpotLightElement interface corresponds to the 'feSpotLight' element.

IDL Definition

interface SVGFESpot Li ght El ement : SVGEl enent {

attribute SVG\unber x;

attribute SVG\unber vy;

attri bute SVG\unber z;

attribute SVGNunber pointsAtX;
attribute SVG\unmber pointsAtY;
attribute SVGNunmber point sAt Z;
attribute SVG\unber specul ar Exponent ;

Attributes

SV GNumber x

Corresponds to attribute x on the given ‘feSpotLight' element.
SVGNumber y

Corresponds to attribute y on the given ‘feSpotLight' element.
SVGNumber z

Corresponds to attribute z on the given 'feSpotLight' element.
SVGNumber pointsAtX

Corresponds to attribute pointsAtX on the given 'feSpotLight' element.
SVGNumber pointsAtY

Corresponds to attribute pointsAtY on the given 'feSpotLight' element.
SV GNumber pointsAtZ

Corresponds to attribute pointsAtZ on the given 'feSpotLight' element.
SV GNumber specul arExponent

Corresponds to attribute specul arExponent on the given ‘feSpotLight' element.

Interface SVGFEDisplacementMapElement

The SV GFEDi splacementM apElement interface corresponds to the 'feDisplacementMap' element.

IDL Definition

interface SVGFED spl acement MapEl ement : SVCEl enent, SVGFi |t er NodeSt andar dAttri butes {
/1 Channel Selectors
constant unsigned short SVG CHANNEL_UNKNOAN
constant unsigned short SVG CHANNEL_R
constant unsigned short SVG CHANNEL_G
constant unsigned short SVG CHANNEL_B
constant unsigned short SVG CHANNEL_A

IR TR TR TINT]
rohERO

attribute DOVBtring in;

attribute DOVString in2;

attribute unsigned short xChannel Sel ector;
attribute unsigned short yChannel Sel ector;
attribute SVG\umber scal e;

Definition group Channel Selectors
Defined constants

SVG_CHANNEL_UNKNOWN Thetypeis not one of predefined types. It isinvalid to attempt to define a new value of thistype
or to attempt to switch an existing value to this type.

SVG_CHANNEL_R Correspondsto value R.
SVG_CHANNEL_G Correspondsto value G.
SVG_CHANNEL_B Corresponds to value B.
SVG_CHANNEL_A Correspondsto value A.
Attributes
DOMStringin
Corresponds to attribute in on the given ‘feDisplacementMap' element.
DOMString in2
Corresponds to attribute in2 on the given 'feDisplacementMap' element.
unsigned short xChannel Selector
Corresponds to attribute xChannel Selector on the given 'feDisplacementMap' element. Takes on one of the Channel Selectors.
unsigned short yChannel Selector
Corresponds to attribute yChannel Selector on the given 'feDisplacementMap' element. Takes on one of the Channel Selectors.
SVGNumber scale

Corresponds to attribute scale on the given 'feDisplacementMap' el ement.

Interface SVGFEFloodElement

The SV GFEF| oodElement interface corresponds to the 'feFlood' element.

IDL Definition

interface SVGFEF| oodEl ement : SVCEl enent, SVGFilterNodeStandardAttributes {
attribute DOVString in;

#i f def STYLABLESVG
/1 The followi ng pre-defined attribute collections are only
/1 available in the DOMfor Stylable SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The followi ng pre-defined attribute collections are only
/1 available in the DOM for Exchange SVG

EXCHANGESVH eFl oodAttrs;
#endi f EXCHANGESVG
b

Attributes
DOMString in
Corresponds to attribute in on the given 'feBlend' element.

Interface SVGFEGaussianBlurElement

The SV GFEGaussianBlurElement interface corresponds to the 'feGaussianBlur' element.

IDL Definition

interface SVGFEGaussi anBl ur El ement : SVGEl enent, SVGFilterNodeStandardAttributes {
attribute DOVString in;
readonly attribute SVG.ength stdDevi ationX;
readonly attribute SVG.ength stdDevi ationY;

void setStdDeviation (in SVGength stdDeviationX, in SVG.ength stdDeviationY)
rai ses(SVGException);

Attributes
DOMString in
Corresponds to attribute in on the given 'feGaussianBlur' element.
readonly SV GLength stdDeviationX
Corresponds to attribute stdDeviation on the given 'feGaussianBlur' element. Contains the X component of attribute stdDeviation.
readonly SV GLength stdDeviationY

Corresponds to attribute stdDeviation on the given 'feGaussianBlur' element. Contains the Y component (possibly computed
automatically) of attribute stdDeviation.

Methods
setStdDeviation
Sets the values for attribute stdDeviation.
Parameters

in SVGLength stdDeviationX The X component of attribute stdDeviation.
in SVGLength stdDeviationY TheY component of attribute stdDeviation.

No Return Value
Exceptions
SVGException SVG_WRONG_TYPE_ERR: Raised if a parameter is of the wrong type.

Interface SVGFEImageElement
The SV GFEImageElement interface corresponds to the 'felmage' element.

IDL Definition

interface SVGFElI negeEl ement : SVGEl ement, SVGFi|terNodeStandardAttributes, SVGTransfornable, SVG.angSpace, SVGURI Reference {
attribute DOVString cl assNane;
attribute DOVBtring in;

#i f def STYLABLESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOMfor Stylable SVG
STYLABLESVGSt yl eAttri bute;

#endi f STYLABLESVG

#i f def EXCHANGESVG
/1 The follow ng pre-defined attribute collections are only
/1 available in the DOM for Exchange SVG
EXCHANGESVGCont ai ner Attrs;
EXCHANGESVGFi | | StrokeAttrs;
EXCHANGESVGGr adi ent Attrs;
EXCHANGESVGG aphi csAttrs;
EXCHANGESVG\Var ker At trs;
EXCHANGESVGText Cont ai ner At trs;
EXCHANGESVGText El enment At trs;
EXCHANGESVGVi ewpor t At trs;

#endi f EXCHANGESVG

1

Attributes
DOM String className
Corresponds to attribute class on the given element.
DOMString in
Corresponds to attribute in on the given 'felmage' element.

Interface SVGFEMergeElement

The SVGFEMergeElement interface corresponds to the 'feMerge’ element.

IDL Definition

interface SVGFEMer geEl ement : SVCEl enent, SVGFilterNodeSt andardAttri butes;

Interface SVGFEMergeNodeElement

The SVGFEMergeNodeElement interface corresponds to the ‘feMergeNode' element.

IDL Definition

interface SVGFEMer geNodeEl enent : SVGEl enent {
attribute DOVString in;
s

Attributes
DOMString in
Corresponds to attribute in on the given 'felmage' element.

Interface SVGFEMorphologyElement

The SV GFEM orphol ogyElement interface corresponds to the ‘feMorphology' el ement.

IDL Definition

i nterface SVGFEMorphol ogyEl ement : SVGEl enent, SVGFi | ter NodeSt andardAttributes {
/'l Morphol ogy Operators
constant unsigned short SVG MORPHOLOGY_OPERATOR_UNKNOWN
constant unsigned short SVG MORPHOLOGY_OPERATOR_ERCDE

0;
1
constant unsigned short SVG MORPHOLOGY_OPERATOR DI LATE 2;

attribute DOVBtring in;
attribute unsigned short operator;
attribute SVGLength radi us;

Definition group Morphology Operators
Defined constants

SVG_MORPHOLOGY_OPERATOR_UNKNOWN Thetypeis not one of predefined types. It isinvalid to attempt to define a
new value of thistype or to attempt to switch an existing value to this type.

SVG_MORPHOLOGY_OPERATOR_ERODE Correspondsto value erode.
SVG_MORPHOLOGY_OPERATOR_DILATE Corresponds to value dilate.
Attributes
DOMStringin
Corresponds to attribute in on the given ‘feMorphology' element.
unsigned short operator
Corresponds to attribute operator on the given ‘feMorphology' element. Takes on one of the Channel Selectors.
SVGLength radius
Corresponds to attribute radius on the given ‘feMorphology' el ement.

Interface SVGFEOffsetElement

The SV GFEOffsetElement interface corresponds to the 'feOffset' element.

IDL Definition

interface SVGFEX fset El ement : SVGEl ement, SVGFi|terNodeSt andardAttributes {
attribute DOVString in;
attribute SVGength dx;
attribute SVGL.ength dy;

Attributes
DOMString in
Corresponds to attribute in on the given 'feOffset’ element.
SVGLength dx

Corresponds to attribute dx on the given 'feOffset’ element.
SVGLength dy
Corresponds to attribute dy on the given 'feOffset’ element.

Interface SVGFESpecularLightingElement

The SV GFESpecularLightingElement interface corresponds to the 'feSpecularLighting' element.

IDL Definition

i nterface SVGFESpecul arLi ghti ngEl ement : SVCEl enent, SVGFi|terNodeStandardAttributes {
attribute DOVString in;
attribute SVG\unber surfaceScal e;
attribute SVG\unmber specul ar Const ant;
attribute SVG\unmber specul ar Exponent;
attribute SVGCol or 1ightCol or;

Attributes
DOMString in
Corresponds to attribute in on the given 'feSpecularLighting' element.
SVGNumber surfaceScale
Corresponds to attribute surfaceScale on the given ‘feSpecularLighting’ element.
SV GNumber specularConstant
Corresponds to attribute specularConstant on the given ‘feSpecularLighting' element.
SV GNumber specul arExponent
Corresponds to attribute specularExponent on the given 'feSpecularLighting' element.
SVGCalor lightColor
Corresponds to attribute lightColor on the given 'feSpecularLighting' element.

Interface SVGFETIileElement

The SVGFETiIleElement interface corresponds to the 'feTile' element.

IDL Definition

interface SVGFETi | eEl enent : SVGEl ement, SVGFilterNodeStandardAttributes {
attribute DOVString in;
s

Attributes
DOMString in
Corresponds to attribute in on the given 'feTile' element.

Interface SVGFETurbulenceElement

The SV GFETurbulenceElement interface corresponds to the 'feTurbulence' element.

IDL Definition

interface SVGFETurbul enceEl ement : SVGEl enent, SVGFilterNodeStandardAttributes {
/'l Turbul ence Types
constant unsigned short SVG TURBULENCE_TYPE_UNKNOMN
constant unsigned short SVG TURBULENCE_TYPE_FRACTALNO SE
constant unsigned short SVG TURBULENCE_TYPE_TURBULENCE
/1 Stitch Options

0;
1
by

constant unsigned short SVG STI TCHTYPE_UNKNOWN = O;
constant unsigned short SVG STI TCHTYPE_STITCH = 1;
constant unsigned short SVG STI TCHTYPE_NGOSTI TCH = 2;
attribute DOVString in;
attribute SVG\umber baseFr equencyX;

attribute SVGNumber baseFrequencyY;

attribute SVA nteger nunCct aves;
attribute unsigned short type;
attribute SVG\unber seed,
attribute unsigned short stitchTiles;

Definition group Turbulence Types
Defined constants

SVG_TURBULENCE_TYPE_UNKNOWN The typeis not one of predefined types. It isinvalid to attempt to define a new
value of thistype or to attempt to switch an existing value to this type.

SVG_TURBULENCE_TYPE_FRACTALNOISE Corresponds to value fractalNoise.
SVG_TURBULENCE_TYPE_TURBULENCE Corresponds to value turbulence.
Definition group Stitch Options
Defined constants

SVG_STITCHTYPE_UNKNOWN The typeis not one of predefined types. It isinvalid to attempt to define a new value of this
type or to attempt to switch an existing value to this type.

SVG_STITCHTYPE_STITCH Corresponds to value stitch.
SVG_STITCHTYPE_NOSTITCH Corresponds to value noStitch.
Attributes
DOMStringin
Corresponds to attribute in on the given 'feTurbulence' element.
SV GNumber baseFrequencyX
Corresponds to attribute baseFrequencyX on the given 'feTurbulence' element.
SV GNumber baseFrequencyY
Corresponds to attribute baseFrequencyY on the given feTurbulence' element.
SV GInteger numOctaves
Corresponds to attribute numOctaves on the given 'feTurbulence' element.
unsigned short type
Corresponds to attribute type on the given 'feTurbulence' element. Takes on one of the Turbulence Types.
SVGNumber seed
Corresponds to attribute seed on the given 'feTurbulence' element.
unsigned short stitchTiles
Corresponds to attribute stitchTiles on the given 'feTurbulence' element. Takes on one of the Stitching Options.

previous next contents properties index

previous next contents properties index

16 Interactivity

Contents

e 16.1 Introduction

o 16.2 User interface events

o 16.3 Pointer events

e 16.4 Processing order for user interface events

o 16.5 The 'pointer-events property

e 16.6 Zooming panning and magnification
e 16.7 Cursors
o 16.7.1 Introduction to cursors

o 16.7.2 The'cursor' property

o 16.7.3 The'cursor' element
o 16.8 DOM interfaces

16.1 Introduction

SV G content can be interactive (i.e., responsive to user-initiated events) by utilizing the following
features in the SV G language:

« User-initiated actions such as button presses on the pointing device (e.g., amouse) or keyboard
events can cause animations or Scripts to execute.

« Theuser can initiate hyperlinks to new web pages (see Links out of SVG content: the 'a’ element)
by actions such as mouse clicks when the pointing device is positioned over particular graphics
elements.

« Inmany cases, depending on the value of the enableZoomAndPanControls attribute on the 'svg'
element and on the characteristics of the user agent, users are able to zoom into and pan around
SV G content.

« User movements of the pointing device can cause changes to the cursor that shows the current
position of the pointing device.

This chapter describes:
« information about user interface events, including under which circumstances user interface

events are triggered
« how to indicate whether a given document can be zoomed and panned

« how to specify which cursorsto use

Related information can be found in other chapters:
« hyperlinks are discussed in Links

« scripting and event attributes are discussed in Scripting
o SVG'srelationship to DOM?2 eventsis discussed in Relationship with DOM 2 event model
« animation isdiscussed in Animation

16.2 User interface events

On user agents which support interactivity, it is common for authors to define SVG document such that
they are responsive to user interface events. Among the set of possible user events are pointer events,

keyboard events, and document events.

In response to user interface (Ul) events, the author might start an animation, perform a hyperlink to
another web page, highlight part of the document (e.g., change the color of the graphics elements which
are under the pointer), initiate a"roll-over" (e,g., cause some previously hidden graphics elements to
appear near the pointer) or launch a script which communi cates with a remote database.

For all Ul event-related features defined as part of the SV G language via event attributes or animation,
the event model corresponds to the event bubbling model described in DOM2 [DOM2-EVBUBBLE].
The event capture model from DOM2 [DOM2-EV CAPTURE] can only be established from DOM
method calls.

16.3 Pointer events

User interface events that occur because of user actions performed on a pointer device are called pointer
events.

Many systems support pointer devices such as a mouse or trackball. On systems which use a mouse,
pointer events consist of actions such as mouse movements and mouse clicks. On systemswith a
different pointer device, the pointing device often emulates the behavior of the mouse by providing a
mechanism for equivalent user actions, such as a button to press which is equivalent to a mouse click.

For each pointer event, the SV G user agent determines the target element of a given pointer event. The
target element is the topmost graphics element whose relevant graphics content is under the pointer at
the time of the event. (See property 'pointer-events for a description of how to determine the situations

in which a graphic element receives pointer events.)

The event is either initially dispatched to the target element, to one of the target element's ancestors, or
not dispatched, depending on the following:

« If there are no graphics elements whose relevant graphics content is under the pointer (i.e., there
is no target element), the event is not dispatched.

« Otherwise, thereisatarget element. If there is an ancestor of the target element which has

specified an event handler with event capturing [DOM2-EV CAPTURE] for the given event, then
the event is dispatched to that ancestor element.

« Otherwise, if the target element has an appropriate event handler for the given event, the event is
dispatched to the target element.

« Otherwise, each ancestor of the target element (starting with itsimmediate parent) is checked to
seeif it has an appropriate event handler. If an ancestor is found with an appropriate event
handler, the event is dispatched to that ancestor element.

o Otherwise, the event is discarded.

When event bubbling [DOM2-EVBUBBLE] is active, descendant elements receive events before their
ancestors. Thus, if a'path’ element isachild of a'g’ element and they both have event listeners for click
events, then the event will be dispatched to the 'path’ element before the 'g' element.

When event capturing [DOM2-EV CAPTURE] is active, ancestor el ements receive events before their
descendants.

After an event isinitially dispatched to a particular element, unless an appropriate action has been taken
to prevent further processing (e.g., by invoking the preventCapture() or preventBubble() DOM method
call), the event will be passed to the appropriate event handlers (if any) for that element's ancestors (in
the case of event bubbling) or that element's descendants (in the case of event capture) for further
processing.

16.4 Processing order for user interface events

The processing order for user interface eventsis as follows:

« Event handlers assigned to the topmost graphics element under the pointer (and the various
ancestors of that graphics element) receive the event first. If none of the activation event handlers
take an explicit action to prevent further processing of the given event (e.g., by invoking the
preventDefault() DOM method), then the event is passed on for:

« Processing of any relevant CSS2's dynamic pseudo-classes (i.e., :hover, :active and :focus)
[CSS2-DYNPSEUDQ], after which the event is passed on for:

« (For those user interface events which invoke hyperlinks, such as mouse clicks in some user
agents) Link processing. If ahyperlink isinvoked in response to a user interface event, the

hyperlink typically will disable further activation event processing (e.g., often, the link will
define a hyperlink to another web page). If link processing does not disable further processing of
the given event, then the event is passed on for:

« (For those user interface events which can select text, such as mouse clicks and drags on 'text’
elements) Text selection processing. When atext selection operation occurs, typically it will
disable further processing of the given event; otherwise, the event is passed on for:

« Document-wide event processing, such as user agent facilities to allow zooming and panning of
an SV G document fragment.

16.5 The 'pointer-events' property

In different circumstances, authors may or may not want events to be triggered when the pointer is over
the unfilled interior of a graphics element or the pointer is over an invisible graphics element. The
'pointer-events property specifies under what circumstances a given graphics element receive pointer
events.

'pointer-events

Value: visiblePainted | visibleFill | visibleStroke | visibleFillStroke | visible |
painted | fill | stroke | fillstroke | &l | none | inherit
Initial: visiblePainted
Appliesto: container elements and graphics elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes
visiblePainted

The given element receives pointer events when the 'visibility' property is set to visible and when

the pointer isover a"painted” area. The pointer is over apainted areaiif it isover the interior
(i.e, fill) of the element and the 'fill' property is set to a value other than 'none’ or it is over the

perimeter (i.e., stroke) of the element and the 'stroke’ property is set to avalue other than 'none'.
visibleFill
The given element receives pointer events when the 'visibility' property is set to visible and when

the pointer is over the interior (i.e,, fill) of the element. The value of the 'fill' property does not
effect event processing.

visibleStroke

The given element receives pointer events when the 'visibility' property is set to visible and when
the pointer is over the perimeter (i.e., stroke) of the element. The value of the 'stroke' property
does not effect event processing.

visibleFillStroke

The given element receives pointer events when the 'visibility' property is set to visible and when

the pointer isover either the interior (i.e,, fill) or the perimeter (i.e., stroke) of the element. The
values of the 'fill' and 'stroke' properties do not effect event processing.

visible
The given element receives pointer in all cases when the 'visibility' property is set to visible. The
values of the 'fill' and 'stroke’ do not effect event processing.

painted
The given element receives pointer events when the pointer isover a"painted” area. The pointer
isover apainted areaif it is over theinterior (i.e., fill) of the element and the 'fill' property is set
to avalue other than 'none' or it is over the perimeter (i.e., stroke) of the element and the 'stroke’
property is set to avalue other than 'none’. The value of the 'visibility' property does not effect
event processing.

fill
The given element receives pointer events when the pointer is over the interior (i.e,, fill) of the

element. The values of the fill' and 'visibility' properties do not effect event processing.

stroke
The given element receives pointer events when the pointer is over the perimeter (i.e., stroke) of
the element. The values of the 'stroke’ and 'visibility' properties do not effect event processing.
fillStroke

The given element receives pointer events when the pointer is over either the interior (i.e., fill) or
the perimeter (i.e., stroke) of the element. The values of the 'fill', 'stroke’ and 'visibility' properties

do not effect event processing.

all
The given element receives pointer in all cases. The values of the 'fill’, 'stroke’ and 'visibility'
properties do not effect event processing.

none

The given element does not receive pointer events.

For text elements, hit detection is performed on a character cell basis. The values visiblePainted,
visibleFill, visibleStroke and visibleFillStroke are all defined to be equivalent to the value visible, and
the values painted, fill, stroke and fillStroke are al defined to be equivalent to the value al.

For raster elements, hit detection can be defined to be dependent on whether the pixel under the pointer
isfully transparent. For any of the values visiblePainted, visibleFill, visibleStroke and visibleFill Stroke,
the raster element receives the event if the 'visibility' property is set to visible and the pixel under the
pointer is not fully transparent. For avalue of visible, the raster element receives the event if the
'visibility' property is set to visible even if the pixel under the pointer is fully transparent. For any of the
values painted, fill, stroke and fillStroke, the raster element receives the event if the the pixel under the
pointer is not fully transparent, no matter what the value is for the 'visibility' property. For avalue of all,
the raster element receives the event even if the pixel under the pointer is fully transparent, no matter
what the value is for the 'visibility' property.

16.6 Zooming panning and magnification

Zooming represents a (potentially non-uniform) scale transformation on an SVG document fragment in
response to a user interface action. All elements which are specified in user coordinates will scale
uniformly, but elements which use CSS unit identifiers to define coordinates or lengths may be
transformed differently. A zoom operation has the effect of a supplemental scale and translate
transformation inserted into the transformation hierarchy between the outermost 'svg' element and its
children, asif an extra'g' element enclosed all of the children and that 'g' element specified a
transformation to achieve the desired zooming effect.

Panning represents a trandation (i.e., a shift) transformation on an SV G document fragment in response
to auser interface action.

Magnification represents complete, uniform transformation on an an SV G document fragment, where
the magnify operation scales al graphical elements by the same amount. A magnify operation has the
effect of a supplemental scale and trand ate transformation placed at the outermost level on the SVG
document fragment (i.e., outside the outermost 'svg' element)..

Some ability to zoom and pan SV G document fragments are required for SV G user agents that operate

in interaction-capable user environments. Document-level magnification capabilities are recommended
for SV G user agents to enable accessibilty to those who are partially visually impaired.

The outermost 'svg' element in an SV G document fragment has attribute enableZoomAndPanControls,
which takes the possible values of true and false, with the default being true. If true, in environments
that support user interactivity, the user agent shall provide user interface controlsto allow the user to
zoom in, zoom out and pan around the given document fragment. If false, the user agent shall disable
these controls and not allow the user to zoom and pan on the given document fragment. If a
enableZoomAndPanControls attribute is assigned to an inner 'svg' element, the
enableZoomAndPanControls setting on the inner 'svg' element will have no effect on the SV G user
agent.

Animatable: no.

16.7 Cursors

16.7.1 Introduction to cursors

Some interactive display environments provide the ability to modify the appearance of the pointer,
which is also known as the cursor. Three types of cursors are available:

« Standard built-in cursors
« Platform-specific custom cursors
« Platform-independent custom cursors

The 'cursor' property is used to specify which cursor to use. The ‘cursor' property can be used to

reference standard built-in cursors by specifying a keyword such as crosshair or a custom cursor.
Custom cursors are references via a <uri> and can point to either an external resource such as a
platform-specific cursor file or to a'cursor' element, which can be used to define a platform-independent

Ccursor.

16.7.2 The 'cursor' property

‘cursor'

Value: [[<uri>]* [auto | crosshair | default | pointer | move)
e-resize | ne-resize | nw-resize | n-resize |
se-resize | sw-resize | s-resize | w-resize|
text | wait | help]] | inherit

Initial: auto

Appliesto: container elements and graphics elements

Inherited: yes

Percentages: N/A

Media: visua, interactive

Animatable: yes

This property specifies the type of cursor to be displayed for the pointing device. Values have the
following meanings:

auto

The UA determines the cursor to display based on the current context.
crosshair

A simple crosshair (e.g., short line segments resembling a"+" sign).
default

The platform-dependent default cursor. Often rendered as an arrow.
pointer

The cursor is a pointer that indicates alink.
move

Indicates something is to be moved.
e-resize, ne-resize, Nw-resize, n-resize, se-resize, Sw-resize, s-resize, w-resize

Indicate that some edge isto be moved. For example, the 'se-resize’ cursor is used when the
movement starts from the south-east corner of the box.

text
Indicates text that can be selected. Often rendered as an |-bar.
wait
Indicates that the program is busy. Often rendered as awatch or hourglass.
help
Help isavailable for the object under the cursor. Often rendered as a question mark or a balloon.
<uri>
The user agent retrieves the cursor from the resource designated by the URI. If the user agent
cannot handle the first cursor of alist of cursors, it shall attempt to handle the second, etc. If the
:Jizter agent cannot handle any user-defined cursor, it must use the generic cursor at the end of the
Example(s):

P { cursor : url("nything.cur"), url("second.csr"), text; }

The 'cursor' property for SVG isidentical to the 'cursor' property defined in the "Cascading Style Sheets
(CSS) level 2" specification [CSS2], with the exception that SV G user agents must support cursors

defined by the 'cursor’ element.

16.7.3 The 'cursor' element

The 'cursor' element can be used to define a platform-independent custom cursor. A recommended
approach for defining a platform-independent custom cursor isto create a PNG [PNGO01] image and
define a'cursor' element that references the PNG image and identifies the exact position within the
image which is the pointer position (i.e., the hot spot).

<! ELEMENT cursor (%lescTitle;) >
<! ATTLI ST cursor
Y%t dAttrs;
YiestAttrs;
X % Coordinate; "0"
y % Coordinate; "0"
Ul i nkRef Attrs;
xlink: href %JRI; #REQUI RED
ext er nal Resour cesRequi red %Bool ean; #| MPLI ED >

Attribute definitions:
x = "<coordinate>"

The x-coordinate of the position in the cursor's coordinate system which represents the precise
position that is being pointed to.
Animatable: yes.

y = "<coordinate>"

The y-coordinate of the position in the cursor's coordinate system which represents the precise
position that is being pointed to.
Animatable: yes.

xlink:href = "<uri>"

A URI reference to the file or element which provides the image of the cursor.
Animatable: yes.

Attributes defined elsewhere:
oustdAttrs;, YotestAttrs;, YoxlinkRefAttrs;.

SV G user agents are required to support PNG format images as targets of the xlink:href property.

16.8 DOM interfaces

The following interfaces are defined below: SV GCursorElement.

Interface SVGCursorElement
The SV GCursorElement interface corresponds to the 'cursor' element.

IDL Definition

interface SVGCursorEl emrent : SVCGEl enent, SVGTests, SVGURI Reference {
attribute SVG.ength x;
attribute SVGA.ength vy;

Attributes

SVGLength x

Corresponds to attribute x on the given ‘cursor' element.
SVGLengthy

Corresponds to attribute y on the given ‘cursor' element.

previous next contents properties index

previous next contents properties index

17 Linking

Contents

o 17.1 Linksout of SVG content: the 'a’ element

« 17.2Linking into SVG content: URI fragments and SV G views
o 17.2.1 Introduction: URI fragments and SVG views
o 17.2.2 SVG fragment identifiers
o 17.2.3 Predefined views: the 'view' element

« 17.3DOM interfaces

17.1 Links out of SVG content: the 'a' element

SVG providesan 'a’ element, analogous to like HTML's 'a’ element, to indicate hyperlinks; those parts of the drawing which when clicked on will
cause the current browser frame to be replaced by the contents of the URL specified in the href attribute.

The'a element uses Xlink. (Note that the XLink specification is currently under development and is subject to change. The SV G working group
will track and rationalize with XLink asit evolves.)

The following isavalid example of a hyperlink attached to a path (which in this case draws atriangle):

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG 20000303 Styl abl e/ / EN'

"http://ww.w3. or g/ TR/ 2000/ 03/ \WD- SVG- 20000303/ DTD/ svg- 20000303- st yl abl e. dtd" >
<svg w dth="4in" hei ght="3in">

<desc>This valid svg docunent draws a triangle which is a hyperlink

</ desc>

<a xlink:href="http://ww. w3. org">

<path d="M 0 O L 200 O L 100 200 z"/>

</ a>

</ svg>

Download this example

Thisisthe well-formed equivalent example:

<?xm version="1.0" standal one="yes"?>
<svg W dth="4in" hei ght="3in"
xm ns = "http://ww. w3. or g/ 2000/ svg- 20000303- st yl abl e' >
<desc>This well fornmed svg docunent draws a triangle which is a hyperlink
</ desc>
<a xm ns: xli nk="http://ww. w3. org/ 2000/ x| i nk/ namespace/ "
x| ink:type="sinple" xlink:show="replace" xlink:actuate="onRequest"
x| ink:href="http://ww.w3.org">
<path d="M 0 O L 200 0 L 100 200 z"/>
</ a>
</ svg>

Download this example

In both examples, if the path is clicked on, then the current browser frame will be replaced by the W3C home page.

file:///d|/public/svgspec/samples/a-valid.xml
file:///d|/public/svgspec/samples/a-wf.xml

<IENTITY % aExt "" >

<! ELEMENT a (#PCDATA| desc| title| defs|
path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| swi tch| a|
tspan|tref|textPath|altd yph
% eExt; ¥YaExt;)* >

<I ATTLI ST a
YstdAttrs;
9% angSpaceAttrs;
class %0 assList; #l MPLI ED
transform %ransfornlist; # MPLI ED
Y%r aphi csEl enent Event s;
% estAttrs;
ext er nal Resour cesRequi red % Bool ean; #| MPLI ED
xm ns: xl i nk CDATA #FI XED "htt p://ww. w3. or g/ 2000/ x| i nk/ namespace/ "
xlink:type (sinple|extended|locator|arc) #FIXED "sinple"
xlink:role CDATA #l MPLI ED
xlink:title CDATA #l MPLI ED
xli nk: show (new enbed| repl ace) 'replace’
xlink: actuate (onRequest|onLoad) #FI XED ' onRequest'
xlink: href %JRI; #REQU RED
target %.inkTarget; #l MPLI ED
Yst yl abl eSVG Styl eAttribute;
%ExchangeSVG Cont ai ner Attrs;
%ExchangeSVG Fi | | StrokeAttrs;
%ExchangeSVG Gradi ent Attrs;
%ExchangeSVG Graphi csAttrs;
%ExchangeSVG Mar ker Attrs;
%ExchangeSVG Text Cont ai ner Attrs;
%ExchangeSVG Text El ement Attrs; >

xmins [:prefix] = "resource-name”

Standard XML attribute for identifying an XML namespace. This attribute makes the XLink [XLink] namespace available to the current
element. Refer to the "Namespacesin XML" Recommendation [XML-NS].
Animatable: no.

xlink:type = 'simpl¢e’
Identifies the type of XLink being used. For hyperlinksin SVG, only simple links are available. Refer to the "XML Linking Language
(XLink)" [XLink].
Animatable: no.

xlink:role = '<string>'
A generic string used to describe the function of the link's content. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:title = '<string>'
Human-readable text describing the link. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.
xlink:show = 'replace’
Indicates that upon activation of the link the referenced document will. replace the entire contents of the current document. Refer to the
"XML Linking Language (XLink)" [XLink].
Animatable: no.
xlink:actuate = 'onRequest’

Indicates that the contents of the referenced object are incorporated into the current document upon user action. Refer to the "XML Linking
Language (XLink)" [XLink].
Animatable: no.

xlink:href = "<uri>"

The location of the referenced object, expressed as a URI reference. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: yes.

target = "<frame-target>"

This attribute has applicability when the current SV G document is used as part of an HTML [HTML4] or XHTML [XHTML] parent

document which defines multiple frames. This attribute specifies the name of an HTML or XHTML frame into which a document is to be
opened when the hyperlink is activated. For more information, refer to the appropriate HTML or XHTML specifications.
Animatable: yes.

The DTD definition of an'a element allows for any number of 'desc', 'title' or 'defs' elements as children, with no restrictions on the placement of
these elements within the 'a element. Thisflexibility is only present due to the mixed content rules for XML [XML-MIXED]. Representations of

future versions of the SV G language might use more expressive representations than DTDs which allow for more restrictive mixed content rules. It
is strongly recommended that at most one 'desc’, at most one 'title' and at most one 'defs element appear, and that these elements appear before any

other child elements or character data content to match the restrictions on 'desc', 'title' and 'defs' that appear in the rest of the SVG DTD. If user

agents need to choose among multiple 'desc’ or 'title' elements for processing (e.g., to decide which string to use for atooltip), the user agent shall
choose the first one. All of the 'defs elements shall be available for processing.

17.2 Linking into SVG content: URI fragments and SVG views

17.2.1 Introduction: URI fragments and SVG views

On the Internet, resources are identified using URIs (Uniform Resource Identifiers) [URI]. For example, an SV G file called MyDrawing.svg
located at http://www.MyCompany.com might have the following URI:

htt p: / / ww. MyConpany. com’ MyDr awi ng. svg

A URI can also address a particular element within an XML document by including a URI fragment identifier as part of the URI. A URI which
includes a URI fragment identifier consists of an optional base URI, followed by a"#" character, followed by the URI fragment identifier. For
example, the following URI can be used to specify the element whose ID is"Lamppost" within file MyDrawing.svg:

http://ww. MyConpany. com MyDr awi ng. svg#Lanppost

Because SV G content often represent a picture or drawing of something, acommon need isto link into a particular view of the document, where a
view indicates the initial transformations so as to present a closeup of a particular section of the document.

17.2.2 SVG fragment identifiers

To link into a particular view of an SVG document, the URI fragment identifier needs to be a correctly formed SV G fragment identifier. An SVG
fragment identifier, which defines the meaning of the "selector" or "fragment identifier" portion of URIsthat |ocate resources of MIME mediatype
"image/svg".

An SVG fragment identifier can comein three forms:

« Shorthand bare name form of addressing (e.g., MyDrawing.svg#MyView). Thisform of addressing, which allows addressing an SVG
element by itsID, is compatible with the fragment addressing mechanism for older versions of HTML and the shorthand bare name
formulation in "XML Pointer Language (XPointer)" [XPTR]. (The bare name form of addressing #MyElement is equivalent to the X Pointer
formulation #xpointer(id'MyView").)

« XPointer-compatible ID reference (e.g., MyDrawing.svg#xpointer(id('MyView'))). This form of addressing, which also allows addressing
an SVG element by its D, is compatible with the syntax for referencing IDsin "XML Pointer Language (XPointer)" [XPTR].

« SVG view specification (e.g., MyDrawing.svg#svgView(viewBox(0,200,1000,1000))). This form of addressing specifiesthe desired view
of the document (e.g., the region of the document to view, the initial zoom level) completely within the SV G fragment specification. The
contents of the SV G view specification are the five parameter specifications, viewBox(...), preserveAspectRatio(...), transform(...),
enableZoomAndPanControls(...) and viewTarget(...), whose parameters have the same meaning as the corresponding attributes on a 'view'
element.

An SVG fragment identifier is defined as follows:

SVGFragnent I dentifier ::= BareNane |

XPoi nter| DRef |

SVGVi ewSpec
Bar eNane ::= XM._Nane
XPoi nterl DRef ::= 'xpointer(id(' XM._Nanme "))’
SVGVi ewSpec ::= 'svgView(' SVGViewAttributes ')’
SVGVi ewAttributes ::= SVGViewAttribute |

SVGVi ewAttribute ';' SVGVi ewAttributes

SVGVi ewAttribute ::= viewBoxSpec |

preserveAspect Rati oSpec |
transf or nSpec |
enabl eZoomAndPanCont r ol sSpec |
vi ewTar get Spec
vi ewBoxSpec ::= 'viewBox(' X '," Y ',' Wdth ',' Height ')’
X ::= Nunber
Y ::= Nunber
Wdth ::= Nunber
Hei ght ::= Nunber
preserveAspect Rati oSpec = ' preserveAspect Rati o(' AspectParanms ')’

Aspect Params ::= Aspect Val ue |
AspectValue ',' MeetOrSlice

AspectValue ::= '"none' | 'xMnYMn' | 'xMnYMd' | 'xMnYMax' |

"XMdYMn' | 'xMdYMd' | 'xMdYMax' |
"xMaxYM n' | ' xMaxYM d' | ' xMaxYMax'
MeetOrSlice ::= "neet' | 'slice'
Hei ght ::= Nunber
transfornSpec ::= "transforn(' TransfornParans ')’
transfornfSpec ::= 'enabl eZoomAndPanControl s(* TrueOrFalse ')
TrueOrFalse ::= '"true' | 'false'
vi ewTar get Spec ::= 'viewTarget (' XM._Name ')’
where:

« XML_Nameisan XML name (i.e., matches the name formulation rulesin XML 1.0).

« Number isareal number.

« The parameter values for viewBoxSpec corresponds to to the parameter values for the viewBox attribute on the 'svg' element. For example,
viewBox(0,0,200,200).

« The parameter values for preserveAspectRatioSpec corresponds to to the parameter values for the preserveAspectRatio attribute on the 'svg'
element. For example, preserveAspectRatio(xMidY Mid).

« The parameter values for transformSpec corresponds to to the parameter values for the transform attribute that is available on many SVG
elements. For example, transform(matrix(2 0 0 2 10 15)).

« The parameter values for transformSpec corresponds to to the parameter values for the transform attribute that is available on many SVG
elements. For example, transform(matrix(2 0 0 2 10 15)).

« The parameter values for enableZoomAndPanControl sSpec corresponds to to the parameter values for the enableZoomAndPanControls
attribute on the 'svg' element. For example, enableZoomAndPanControl s(fal se).

« The parameter values for viewTargetSpec corresponds to to the parameter values for the viewTarget attribute on the 'view' element. For
example, viewTarget(MyElementI D).

Spaces are not allowed in fragment specifications; thus, commas are. used to separate numeric values within an SV G view specification (e.g.,
#svgView(viewBox(0,0,200,200))) and semicolons are. used to separate attributes (e.g.,
#svgView(viewBox(0,0,200,200); preserveAspectRatio(none))).

When a source document performs a hyperlink into an SVG document viaan HTML [HTML4] linking element (i.e., <ahref=...> element in
HTML) or an XLink specification [XLINK], then the SV G fragment identifier specifiestheinitial view into the SVG document, as follows:

« If no SVG fragment identifier is provided (e.g, the specified URI did not contain a"#" character, such as MyDrawing.svg), then the initial
view into the SVG document is established using the view specification attributes (i.e., viewBox, etc.) on the outermost 'svg' element.

« |f the SVG fragment identifier addresses a'view' element within an SVG document (e.g., MyDrawing.svg#MyView or
MyDrawing.svg#xpointer(id('MyView"))) then the closest ancestor 'svg' element is displayed in the viewport. Any view specification
attributes included on the given 'view' element override the corresponding view specification attributes on the closest ancestor 'svg' element.

« |f the SVG fragment identifier addresses any element other than a'view' element, then the document defined by the closest ancestor 'svg'
element is displayed in the viewport using the view specification attributes on that 'svg' element.

17.2.3 Predefined views: the 'view' element
The 'view' element is defined as follows:

<IENTITY %vi ewExt "" >
<I ELEMENT vi ew (%lescTitl e; %vi ewext;) >
<! ATTLI ST vi ew
Yst dAttrs:
vi ewBox %/ ewBoxSpec; #l MPLI ED
preserveAspect Rati o %°r eserveAspect Rati oSpec; 'xM dYM d neet’
enabl eZoomAndPanControls (true | false) "true"
vi ewTar get CDATA #| MPLI ED
ext ernal Resour cesRequi red %Bool ean; #| MPLI ED >

Attribute definitions:
viewTarget = "XML_Name [XML_NAME]*"

Indicates the target object associated with the view. If provided, then the target element(s) will. be highlighted.
Animatable: no.

Attributes defined elsewhere:
%stdAttrs;, viewBox, preserveAspectRatio, enableZoomAndPanControls.

17.3 DOM interfaces

The following interfaces are defined below: SVGAElement, SVGViewSpec, SVGViewElement.

Interface SVGAElemen